光子范文10篇
時間:2024-02-02 02:38:26
導語:這里是公務員之家根據多年的文秘經驗,為你推薦的十篇光子范文,還可以咨詢客服老師獲取更多原創文章,歡迎參考。
光電效應光子教案
【教材】全日制普通高級中學教科書·物理第三冊(必修加選修)第二十二章第一節。
【教學時間】一課時。
【教學目標】
1.知識與技能
●了解并識別光電效應現象。
●能表述光電效應現象的規律。
光電效應光子物理教案
教材全日制普通高級中學教科書·物理第三冊(必修加選修)第二十二章第一節。
教學時間一課時。
教學目標
1.知識與技能
了解并識別光電效應現象。
能表述光電效應現象的規律。
物理學理論研究論文
一、駁宇宙大爆炸假說
當人們用望遠鏡觀測銀河系以外的星系時,可以發現絕大多數星系光譜都存在紅移或藍移現象,并且越遠的星系其光譜紅移值越大。根據多普勒效應:星系光譜存在紅移說明星系正離我們遠去,星系光譜存在藍移說明星系正向著我們運動。需要指出的是越遠的星系紅移值也越大,看起來所有的星系都好象以銀河系為中心向外爆炸形成的一樣,越遠的星系離開我們的速度也越大。鑒于此有人提出宇宙大爆炸假說:認為宇宙是由150億年前發生的一次大爆炸形成的,人類居住的銀河系則是宇宙的中心。可是人們在觀測銀河系和河外星系時,卻并沒有發現銀河系有什么特別之處。有人據此懷疑宇宙大爆炸假說;也有人從星系的演化推算出宇宙的年齡大于150億年;還有人認為若宇宙大爆炸假說是正確的,那么宇宙輻射在各個方向上就會表現出各向異性;更有人擔心宇宙的膨脹沒有盡頭,遂認為宇宙的膨脹和收縮是交替進行的……。但不管怎樣,大部分人還是相信“眼見為實”,由星系光譜的紅移現象承認了宇宙大爆炸假說。更有人把紅移現象與宇宙背景輻射和宇宙元素豐度并作宇宙大爆炸假說的三大支柱。那么宇宙是否發生過爆炸并仍在向外擴張,年齡是否只有150億年呢?非也!
1.星系光譜紅移原因
20世紀初,當人們用望遠鏡觀測銀河系以外的星系時,發現絕大多數星系光譜都有紅移現象,并且越遠的星系其光譜紅移值越大。有人認為星系光譜紅移是因為星系正在離我們遠去,從而得出這樣的結論:所有的星系都是以我們銀河系為中心向外爆炸后形成的,越遠的星系離開我們的速度也越大;宇宙中所有的星系都在彼此分離,并且越遠的星系相互分離的速度越大。值得一提的是,我們銀河系正處在爆炸中心,足以值得我們自豪的是:銀河系是宇宙中獨一無二的星系—因為它是宇宙的中心。更讓我們驚奇的是,銀河系自身也在不斷運動著,然而無論它運動到哪里,它始終是銀河系的中心。我們解釋不了銀河系為什么是宇宙的中心,因為銀河系也和其它星系一樣,并沒有什么特別之處。有人以為,銀河系處于宇宙的中心是一個巧合,雖然銀河系從上個世紀至今一直在不斷運動,但它走過的距離和整個宇宙空間的尺寸比起來是微不足道的,所以銀河系目前仍然處在宇宙的中心,這種看法未免有些牽強。因為人們在觀測近處的星系時,發現近處的星系并沒有相互分離的趨勢,并且也沒有證據表明近處的星系正在以某一個中心為起點向外膨脹。因此“銀河中心說”頗值得懷疑。還有的人雖然承認宇宙大爆炸假說,但不承認“銀河中心說”,他們不認為銀河系是宇宙的中心。這種觀點同樣也是站不住腳的。我們可以這樣分析:如果宇宙大爆炸假說是正確的,那么宇宙中所有的星系必定在以某一個中心為起點向外膨脹,星系之間彼此互相分離。目前我們觀測到近處的星系并沒有相互分離的趨勢,并且也沒有證據表明近處的星系在以某一個中心為起點向外膨脹。倘若我們不是在宇宙的中心而是處于偏離宇宙中心的任一點處,因為在我們周圍的星系都沒有相互分離的趨勢,也沒有以某一個中心為起點向外膨脹,這樣一來,倘若宇宙中任一點處的星系都沒有相互分離的趨勢,那么整個宇宙也不可能在膨脹,即宇宙大爆炸假說是錯誤的。
前事不忘,后事之師。人類文明發展到今天,“地心說”和“日心說”都被證明是為科學,難道我們還要重蹈覆轍提出“銀河中心說”嗎?愚以為,我們應當承認這樣一個假設,那就是:銀河系按目前的速度運動下去,100萬年,100億年以后,我們仍然會發現自己處在宇宙的“中心”,無論我們處在宇宙的任何地方,中心也好,邊緣也好,我們都會發現宇宙中越遠的星系光譜紅移值也越大,就好象我們處在宇宙的“中心”一樣。事實上,這個“中心”是光子在宇宙空間中的傳播特性引起我們視覺上的錯誤,“眼見”未必“為實”,我們不能過分相信“眼見”的東西。
紅移現象是否由觀測者自身的運動引起的呢?不是的!如果紅移現象是由觀測者自身的運動引起的,那么我們將觀測到與我們相向運動的星系光譜將發生藍移而與我們相背運動的星系光譜將發生紅移,然而事實并非如此。再者,雖然我們“坐地日行八萬里”,但這個速度和光速比起來實在算不了什么,不至于影響觀測結果。換句話說,我們在觀測星系紅移值時,觀測者自身運動速度的影響可以忽略不計。紅移現象說明光子與觀察者之間的相對速度變小了。產生這種情況有兩種可能:第一是星系正離我們遠去,第二是光子在穿越宇宙空間時速度變小了。這兩種情況都可能導致星系光譜紅移。我們認為導致星系光譜紅移的原因是后者。光子在穿越宇宙空間時會與各種粒子(比如引力子)相互作用從而使其速度逐漸減小。當然單個粒子與光子作用時間極短,引起光子速度的改變量也是極其微小的,以致于我們觀測不到。隨著光子穿越宇宙空間距離的增大,與光子作用的粒子數目也逐漸增多,光子速度的減小量也越明顯??梢酝茰y:光子在穿越一定的宇宙空間距離后速度將減小到零。由于光子速度為零故相對我們的能量也為零,這樣的光子當然不會被我們觀測到??梢娪霉鈱W法觀測宇宙空間尺度時有一個極限:150億光年(也有人認為是200億光年)。在這個尺度以外的星系發出的光子由于在沒有到達地球時速度已經降低到零,所以這樣的星系不可能被我們觀測到,至少目前還沒有辦法觀測到。也有人認為,紅移現象是由光子頻率減小引起的,即認同第一種可能:認為星系正離我們遠去。這種觀點聽起來很有道理,卻經不起分析。我們知道,星系離我們遠去時會引起光子頻率減小,但各種不同頻率光子的頻率減小量應該相同,反應在星系光譜上,各種不同頻率光子的紅移量應該相同。因此,不論星系離我們多遠,星系光譜雖然發生紅移但不應該變寬,但事實上遠處星系光譜卻被拉寬了(星系光譜不會變寬是指星系光譜中任意兩條譜線的距離恒定,雖然它們都發生了紅移,但它們移動的距離相等,因此各譜線之間的距離不變)。而且能量越小的光子紅移值越大,能量越大的光子紅移值越小。不同頻率光子的頻率減小量不同,說明紅移現象不是由光子頻率減小引起的。即第一種可能站不住腳。假設宇宙中所有的星系都是靜止的,宇宙空間中的物質是均勻分布的,那么光子穿越宇宙空間時的速度衰減量僅與其通過的空間距離有關。光子穿越的宇宙空間越長,其速度衰減量也越大。這樣星系光譜的紅移值僅與其離我們的距離有關,離我們越遠的星系紅移值也越大,就好象越遠的星系正在以越快的速度離開我們一樣。這也正是哈勃定律所揭示的:星系遠離銀河系的速度ν與距離成正比,ν=H*D,其中H為哈勃常數。實際上宇宙中各星系都在不斷運動著,宇宙空間中的物質也并非均勻分布的,造成星系光譜紅移的原因也很多,所以光譜的實際紅移值要考慮許多情況。
物理學理論探析論文
一、駁宇宙大爆炸假說
當人們用望遠鏡觀測銀河系以外的星系時,可以發現絕大多數星系光譜都存在紅移或藍移現象,并且越遠的星系其光譜紅移值越大。根據多普勒效應:星系光譜存在紅移說明星系正離我們遠去,星系光譜存在藍移說明星系正向著我們運動。需要指出的是越遠的星系紅移值也越大,看起來所有的星系都好象以銀河系為中心向外爆炸形成的一樣,越遠的星系離開我們的速度也越大。鑒于此有人提出宇宙大爆炸假說:認為宇宙是由150億年前發生的一次大爆炸形成的,人類居住的銀河系則是宇宙的中心??墒侨藗冊谟^測銀河系和河外星系時,卻并沒有發現銀河系有什么特別之處。有人據此懷疑宇宙大爆炸假說;也有人從星系的演化推算出宇宙的年齡大于150億年;還有人認為若宇宙大爆炸假說是正確的,那么宇宙輻射在各個方向上就會表現出各向異性;更有人擔心宇宙的膨脹沒有盡頭,遂認為宇宙的膨脹和收縮是交替進行的……。但不管怎樣,大部分人還是相信“眼見為實”,由星系光譜的紅移現象承認了宇宙大爆炸假說。更有人把紅移現象與宇宙背景輻射和宇宙元素豐度并作宇宙大爆炸假說的三大支柱。那么宇宙是否發生過爆炸并仍在向外擴張,年齡是否只有150億年呢?非也!
1.星系光譜紅移原因
20世紀初,當人們用望遠鏡觀測銀河系以外的星系時,發現絕大多數星系光譜都有紅移現象,并且越遠的星系其光譜紅移值越大。有人認為星系光譜紅移是因為星系正在離我們遠去,從而得出這樣的結論:所有的星系都是以我們銀河系為中心向外爆炸后形成的,越遠的星系離開我們的速度也越大;宇宙中所有的星系都在彼此分離,并且越遠的星系相互分離的速度越大。值得一提的是,我們銀河系正處在爆炸中心,足以值得我們自豪的是:銀河系是宇宙中獨一無二的星系—因為它是宇宙的中心。更讓我們驚奇的是,銀河系自身也在不斷運動著,然而無論它運動到哪里,它始終是銀河系的中心。我們解釋不了銀河系為什么是宇宙的中心,因為銀河系也和其它星系一樣,并沒有什么特別之處。有人以為,銀河系處于宇宙的中心是一個巧合,雖然銀河系從上個世紀至今一直在不斷運動,但它走過的距離和整個宇宙空間的尺寸比起來是微不足道的,所以銀河系目前仍然處在宇宙的中心,這種看法未免有些牽強。因為人們在觀測近處的星系時,發現近處的星系并沒有相互分離的趨勢,并且也沒有證據表明近處的星系正在以某一個中心為起點向外膨脹。因此“銀河中心說”頗值得懷疑。還有的人雖然承認宇宙大爆炸假說,但不承認“銀河中心說”,他們不認為銀河系是宇宙的中心。這種觀點同樣也是站不住腳的。我們可以這樣分析:如果宇宙大爆炸假說是正確的,那么宇宙中所有的星系必定在以某一個中心為起點向外膨脹,星系之間彼此互相分離。目前我們觀測到近處的星系并沒有相互分離的趨勢,并且也沒有證據表明近處的星系在以某一個中心為起點向外膨脹。倘若我們不是在宇宙的中心而是處于偏離宇宙中心的任一點處,因為在我們周圍的星系都沒有相互分離的趨勢,也沒有以某一個中心為起點向外膨脹,這樣一來,倘若宇宙中任一點處的星系都沒有相互分離的趨勢,那么整個宇宙也不可能在膨脹,即宇宙大爆炸假說是錯誤的。
前事不忘,后事之師。人類文明發展到今天,“地心說”和“日心說”都被證明是為科學,難道我們還要重蹈覆轍提出“銀河中心說”嗎?愚以為,我們應當承認這樣一個假設,那就是:銀河系按目前的速度運動下去,100萬年,100億年以后,我們仍然會發現自己處在宇宙的“中心”,無論我們處在宇宙的任何地方,中心也好,邊緣也好,我們都會發現宇宙中越遠的星系光譜紅移值也越大,就好象我們處在宇宙的“中心”一樣。事實上,這個“中心”是光子在宇宙空間中的傳播特性引起我們視覺上的錯誤,“眼見”未必“為實”,我們不能過分相信“眼見”的東西。
紅移現象是否由觀測者自身的運動引起的呢?不是的!如果紅移現象是由觀測者自身的運動引起的,那么我們將觀測到與我們相向運動的星系光譜將發生藍移而與我們相背運動的星系光譜將發生紅移,然而事實并非如此。再者,雖然我們“坐地日行八萬里”,但這個速度和光速比起來實在算不了什么,不至于影響觀測結果。換句話說,我們在觀測星系紅移值時,觀測者自身運動速度的影響可以忽略不計。紅移現象說明光子與觀察者之間的相對速度變小了。產生這種情況有兩種可能:第一是星系正離我們遠去,第二是光子在穿越宇宙空間時速度變小了。這兩種情況都可能導致星系光譜紅移。我們認為導致星系光譜紅移的原因是后者。光子在穿越宇宙空間時會與各種粒子(比如引力子)相互作用從而使其速度逐漸減小。當然單個粒子與光子作用時間極短,引起光子速度的改變量也是極其微小的,以致于我們觀測不到。隨著光子穿越宇宙空間距離的增大,與光子作用的粒子數目也逐漸增多,光子速度的減小量也越明顯??梢酝茰y:光子在穿越一定的宇宙空間距離后速度將減小到零。由于光子速度為零故相對我們的能量也為零,這樣的光子當然不會被我們觀測到。可見用光學法觀測宇宙空間尺度時有一個極限:150億光年(也有人認為是200億光年)。在這個尺度以外的星系發出的光子由于在沒有到達地球時速度已經降低到零,所以這樣的星系不可能被我們觀測到,至少目前還沒有辦法觀測到。也有人認為,紅移現象是由光子頻率減小引起的,即認同第一種可能:認為星系正離我們遠去。這種觀點聽起來很有道理,卻經不起分析。我們知道,星系離我們遠去時會引起光子頻率減小,但各種不同頻率光子的頻率減小量應該相同,反應在星系光譜上,各種不同頻率光子的紅移量應該相同。因此,不論星系離我們多遠,星系光譜雖然發生紅移但不應該變寬,但事實上遠處星系光譜卻被拉寬了(星系光譜不會變寬是指星系光譜中任意兩條譜線的距離恒定,雖然它們都發生了紅移,但它們移動的距離相等,因此各譜線之間的距離不變)。而且能量越小的光子紅移值越大,能量越大的光子紅移值越小。不同頻率光子的頻率減小量不同,說明紅移現象不是由光子頻率減小引起的。即第一種可能站不住腳。假設宇宙中所有的星系都是靜止的,宇宙空間中的物質是均勻分布的,那么光子穿越宇宙空間時的速度衰減量僅與其通過的空間距離有關。光子穿越的宇宙空間越長,其速度衰減量也越大。這樣星系光譜的紅移值僅與其離我們的距離有關,離我們越遠的星系紅移值也越大,就好象越遠的星系正在以越快的速度離開我們一樣。這也正是哈勃定律所揭示的:星系遠離銀河系的速度ν與距離成正比,ν=H*D,其中H為哈勃常數。實際上宇宙中各星系都在不斷運動著,宇宙空間中的物質也并非均勻分布的,造成星系光譜紅移的原因也很多,所以光譜的實際紅移值要考慮許多情況。
物理學理論研究論文
一、駁宇宙大爆炸假說
當人們用望遠鏡觀測銀河系以外的星系時,可以發現絕大多數星系光譜都存在紅移或藍移現象,并且越遠的星系其光譜紅移值越大。根據多普勒效應:星系光譜存在紅移說明星系正離我們遠去,星系光譜存在藍移說明星系正向著我們運動。需要指出的是越遠的星系紅移值也越大,看起來所有的星系都好象以銀河系為中心向外爆炸形成的一樣,越遠的星系離開我們的速度也越大。鑒于此有人提出宇宙大爆炸假說:認為宇宙是由150億年前發生的一次大爆炸形成的,人類居住的銀河系則是宇宙的中心??墒侨藗冊谟^測銀河系和河外星系時,卻并沒有發現銀河系有什么特別之處。有人據此懷疑宇宙大爆炸假說;也有人從星系的演化推算出宇宙的年齡大于150億年;還有人認為若宇宙大爆炸假說是正確的,那么宇宙輻射在各個方向上就會表現出各向異性;更有人擔心宇宙的膨脹沒有盡頭,遂認為宇宙的膨脹和收縮是交替進行的……。但不管怎樣,大部分人還是相信“眼見為實”,由星系光譜的紅移現象承認了宇宙大爆炸假說。更有人把紅移現象與宇宙背景輻射和宇宙元素豐度并作宇宙大爆炸假說的三大支柱。那么宇宙是否發生過爆炸并仍在向外擴張,年齡是否只有150億年呢?非也!
1.星系光譜紅移原因
20世紀初,當人們用望遠鏡觀測銀河系以外的星系時,發現絕大多數星系光譜都有紅移現象,并且越遠的星系其光譜紅移值越大。有人認為星系光譜紅移是因為星系正在離我們遠去,從而得出這樣的結論:所有的星系都是以我們銀河系為中心向外爆炸后形成的,越遠的星系離開我們的速度也越大;宇宙中所有的星系都在彼此分離,并且越遠的星系相互分離的速度越大。值得一提的是,我們銀河系正處在爆炸中心,足以值得我們自豪的是:銀河系是宇宙中獨一無二的星系—因為它是宇宙的中心。更讓我們驚奇的是,銀河系自身也在不斷運動著,然而無論它運動到哪里,它始終是銀河系的中心。我們解釋不了銀河系為什么是宇宙的中心,因為銀河系也和其它星系一樣,并沒有什么特別之處。有人以為,銀河系處于宇宙的中心是一個巧合,雖然銀河系從上個世紀至今一直在不斷運動,但它走過的距離和整個宇宙空間的尺寸比起來是微不足道的,所以銀河系目前仍然處在宇宙的中心,這種看法未免有些牽強。因為人們在觀測近處的星系時,發現近處的星系并沒有相互分離的趨勢,并且也沒有證據表明近處的星系正在以某一個中心為起點向外膨脹。因此“銀河中心說”頗值得懷疑。還有的人雖然承認宇宙大爆炸假說,但不承認“銀河中心說”,他們不認為銀河系是宇宙的中心。這種觀點同樣也是站不住腳的。我們可以這樣分析:如果宇宙大爆炸假說是正確的,那么宇宙中所有的星系必定在以某一個中心為起點向外膨脹,星系之間彼此互相分離。目前我們觀測到近處的星系并沒有相互分離的趨勢,并且也沒有證據表明近處的星系在以某一個中心為起點向外膨脹。倘若我們不是在宇宙的中心而是處于偏離宇宙中心的任一點處,因為在我們周圍的星系都沒有相互分離的趨勢,也沒有以某一個中心為起點向外膨脹,這樣一來,倘若宇宙中任一點處的星系都沒有相互分離的趨勢,那么整個宇宙也不可能在膨脹,即宇宙大爆炸假說是錯誤的。
前事不忘,后事之師。人類文明發展到今天,“地心說”和“日心說”都被證明是為科學,難道我們還要重蹈覆轍提出“銀河中心說”嗎?愚以為,我們應當承認這樣一個假設,那就是:銀河系按目前的速度運動下去,100萬年,100億年以后,我們仍然會發現自己處在宇宙的“中心”,無論我們處在宇宙的任何地方,中心也好,邊緣也好,我們都會發現宇宙中越遠的星系光譜紅移值也越大,就好象我們處在宇宙的“中心”一樣。事實上,這個“中心”是光子在宇宙空間中的傳播特性引起我們視覺上的錯誤,“眼見”未必“為實”,我們不能過分相信“眼見”的東西。
紅移現象是否由觀測者自身的運動引起的呢?不是的!如果紅移現象是由觀測者自身的運動引起的,那么我們將觀測到與我們相向運動的星系光譜將發生藍移而與我們相背運動的星系光譜將發生紅移,然而事實并非如此。再者,雖然我們“坐地日行八萬里”,但這個速度和光速比起來實在算不了什么,不至于影響觀測結果。換句話說,我們在觀測星系紅移值時,觀測者自身運動速度的影響可以忽略不計。紅移現象說明光子與觀察者之間的相對速度變小了。產生這種情況有兩種可能:第一是星系正離我們遠去,第二是光子在穿越宇宙空間時速度變小了。這兩種情況都可能導致星系光譜紅移。我們認為導致星系光譜紅移的原因是后者。光子在穿越宇宙空間時會與各種粒子(比如引力子)相互作用從而使其速度逐漸減小。當然單個粒子與光子作用時間極短,引起光子速度的改變量也是極其微小的,以致于我們觀測不到。隨著光子穿越宇宙空間距離的增大,與光子作用的粒子數目也逐漸增多,光子速度的減小量也越明顯。可以推測:光子在穿越一定的宇宙空間距離后速度將減小到零。由于光子速度為零故相對我們的能量也為零,這樣的光子當然不會被我們觀測到??梢娪霉鈱W法觀測宇宙空間尺度時有一個極限:150億光年(也有人認為是200億光年)。在這個尺度以外的星系發出的光子由于在沒有到達地球時速度已經降低到零,所以這樣的星系不可能被我們觀測到,至少目前還沒有辦法觀測到。也有人認為,紅移現象是由光子頻率減小引起的,即認同第一種可能:認為星系正離我們遠去。這種觀點聽起來很有道理,卻經不起分析。我們知道,星系離我們遠去時會引起光子頻率減小,但各種不同頻率光子的頻率減小量應該相同,反應在星系光譜上,各種不同頻率光子的紅移量應該相同。因此,不論星系離我們多遠,星系光譜雖然發生紅移但不應該變寬,但事實上遠處星系光譜卻被拉寬了(星系光譜不會變寬是指星系光譜中任意兩條譜線的距離恒定,雖然它們都發生了紅移,但它們移動的距離相等,因此各譜線之間的距離不變)。而且能量越小的光子紅移值越大,能量越大的光子紅移值越小。不同頻率光子的頻率減小量不同,說明紅移現象不是由光子頻率減小引起的。即第一種可能站不住腳。假設宇宙中所有的星系都是靜止的,宇宙空間中的物質是均勻分布的,那么光子穿越宇宙空間時的速度衰減量僅與其通過的空間距離有關。光子穿越的宇宙空間越長,其速度衰減量也越大。這樣星系光譜的紅移值僅與其離我們的距離有關,離我們越遠的星系紅移值也越大,就好象越遠的星系正在以越快的速度離開我們一樣。這也正是哈勃定律所揭示的:星系遠離銀河系的速度ν與距離成正比,ν=H*D,其中H為哈勃常數。實際上宇宙中各星系都在不斷運動著,宇宙空間中的物質也并非均勻分布的,造成星系光譜紅移的原因也很多,所以光譜的實際紅移值要考慮許多情況。
物理學理論研究論文
一、駁宇宙大爆炸假說
當人們用望遠鏡觀測銀河系以外的星系時,可以發現絕大多數星系光譜都存在紅移或藍移現象,并且越遠的星系其光譜紅移值越大。根據多普勒效應:星系光譜存在紅移說明星系正離我們遠去,星系光譜存在藍移說明星系正向著我們運動。需要指出的是越遠的星系紅移值也越大,看起來所有的星系都好象以銀河系為中心向外爆炸形成的一樣,越遠的星系離開我們的速度也越大。鑒于此有人提出宇宙大爆炸假說:認為宇宙是由150億年前發生的一次大爆炸形成的,人類居住的銀河系則是宇宙的中心。可是人們在觀測銀河系和河外星系時,卻并沒有發現銀河系有什么特別之處。有人據此懷疑宇宙大爆炸假說;也有人從星系的演化推算出宇宙的年齡大于150億年;還有人認為若宇宙大爆炸假說是正確的,那么宇宙輻射在各個方向上就會表現出各向異性;更有人擔心宇宙的膨脹沒有盡頭,遂認為宇宙的膨脹和收縮是交替進行的……。但不管怎樣,大部分人還是相信“眼見為實”,由星系光譜的紅移現象承認了宇宙大爆炸假說。更有人把紅移現象與宇宙背景輻射和宇宙元素豐度并作宇宙大爆炸假說的三大支柱。那么宇宙是否發生過爆炸并仍在向外擴張,年齡是否只有150億年呢?非也!
1.星系光譜紅移原因
20世紀初,當人們用望遠鏡觀測銀河系以外的星系時,發現絕大多數星系光譜都有紅移現象,并且越遠的星系其光譜紅移值越大。有人認為星系光譜紅移是因為星系正在離我們遠去,從而得出這樣的結論:所有的星系都是以我們銀河系為中心向外爆炸后形成的,越遠的星系離開我們的速度也越大;宇宙中所有的星系都在彼此分離,并且越遠的星系相互分離的速度越大。值得一提的是,我們銀河系正處在爆炸中心,足以值得我們自豪的是:銀河系是宇宙中獨一無二的星系—因為它是宇宙的中心。更讓我們驚奇的是,銀河系自身也在不斷運動著,然而無論它運動到哪里,它始終是銀河系的中心。我們解釋不了銀河系為什么是宇宙的中心,因為銀河系也和其它星系一樣,并沒有什么特別之處。有人以為,銀河系處于宇宙的中心是一個巧合,雖然銀河系從上個世紀至今一直在不斷運動,但它走過的距離和整個宇宙空間的尺寸比起來是微不足道的,所以銀河系目前仍然處在宇宙的中心,這種看法未免有些牽強。因為人們在觀測近處的星系時,發現近處的星系并沒有相互分離的趨勢,并且也沒有證據表明近處的星系正在以某一個中心為起點向外膨脹。因此“銀河中心說”頗值得懷疑。還有的人雖然承認宇宙大爆炸假說,但不承認“銀河中心說”,他們不認為銀河系是宇宙的中心。這種觀點同樣也是站不住腳的。我們可以這樣分析:如果宇宙大爆炸假說是正確的,那么宇宙中所有的星系必定在以某一個中心為起點向外膨脹,星系之間彼此互相分離。目前我們觀測到近處的星系并沒有相互分離的趨勢,并且也沒有證據表明近處的星系在以某一個中心為起點向外膨脹。倘若我們不是在宇宙的中心而是處于偏離宇宙中心的任一點處,因為在我們周圍的星系都沒有相互分離的趨勢,也沒有以某一個中心為起點向外膨脹,這樣一來,倘若宇宙中任一點處的星系都沒有相互分離的趨勢,那么整個宇宙也不可能在膨脹,即宇宙大爆炸假說是錯誤的。
前事不忘,后事之師。人類文明發展到今天,“地心說”和“日心說”都被證明是為科學,難道我們還要重蹈覆轍提出“銀河中心說”嗎?愚以為,我們應當承認這樣一個假設,那就是:銀河系按目前的速度運動下去,100萬年,100億年以后,我們仍然會發現自己處在宇宙的“中心”,無論我們處在宇宙的任何地方,中心也好,邊緣也好,我們都會發現宇宙中越遠的星系光譜紅移值也越大,就好象我們處在宇宙的“中心”一樣。事實上,這個“中心”是光子在宇宙空間中的傳播特性引起我們視覺上的錯誤,“眼見”未必“為實”,我們不能過分相信“眼見”的東西。
紅移現象是否由觀測者自身的運動引起的呢?不是的!如果紅移現象是由觀測者自身的運動引起的,那么我們將觀測到與我們相向運動的星系光譜將發生藍移而與我們相背運動的星系光譜將發生紅移,然而事實并非如此。再者,雖然我們“坐地日行八萬里”,但這個速度和光速比起來實在算不了什么,不至于影響觀測結果。換句話說,我們在觀測星系紅移值時,觀測者自身運動速度的影響可以忽略不計。紅移現象說明光子與觀察者之間的相對速度變小了。產生這種情況有兩種可能:第一是星系正離我們遠去,第二是光子在穿越宇宙空間時速度變小了。這兩種情況都可能導致星系光譜紅移。我們認為導致星系光譜紅移的原因是后者。光子在穿越宇宙空間時會與各種粒子(比如引力子)相互作用從而使其速度逐漸減小。當然單個粒子與光子作用時間極短,引起光子速度的改變量也是極其微小的,以致于我們觀測不到。隨著光子穿越宇宙空間距離的增大,與光子作用的粒子數目也逐漸增多,光子速度的減小量也越明顯。可以推測:光子在穿越一定的宇宙空間距離后速度將減小到零。由于光子速度為零故相對我們的能量也為零,這樣的光子當然不會被我們觀測到??梢娪霉鈱W法觀測宇宙空間尺度時有一個極限:150億光年(也有人認為是200億光年)。在這個尺度以外的星系發出的光子由于在沒有到達地球時速度已經降低到零,所以這樣的星系不可能被我們觀測到,至少目前還沒有辦法觀測到。也有人認為,紅移現象是由光子頻率減小引起的,即認同第一種可能:認為星系正離我們遠去。這種觀點聽起來很有道理,卻經不起分析。我們知道,星系離我們遠去時會引起光子頻率減小,但各種不同頻率光子的頻率減小量應該相同,反應在星系光譜上,各種不同頻率光子的紅移量應該相同。因此,不論星系離我們多遠,星系光譜雖然發生紅移但不應該變寬,但事實上遠處星系光譜卻被拉寬了(星系光譜不會變寬是指星系光譜中任意兩條譜線的距離恒定,雖然它們都發生了紅移,但它們移動的距離相等,因此各譜線之間的距離不變)。而且能量越小的光子紅移值越大,能量越大的光子紅移值越小。不同頻率光子的頻率減小量不同,說明紅移現象不是由光子頻率減小引起的。即第一種可能站不住腳。假設宇宙中所有的星系都是靜止的,宇宙空間中的物質是均勻分布的,那么光子穿越宇宙空間時的速度衰減量僅與其通過的空間距離有關。光子穿越的宇宙空間越長,其速度衰減量也越大。這樣星系光譜的紅移值僅與其離我們的距離有關,離我們越遠的星系紅移值也越大,就好象越遠的星系正在以越快的速度離開我們一樣。這也正是哈勃定律所揭示的:星系遠離銀河系的速度ν與距離成正比,ν=H*D,其中H為哈勃常數。實際上宇宙中各星系都在不斷運動著,宇宙空間中的物質也并非均勻分布的,造成星系光譜紅移的原因也很多,所以光譜的實際紅移值要考慮許多情況。
物理學理論研究論文
一、駁宇宙大爆炸假說
當人們用望遠鏡觀測銀河系以外的星系時,可以發現絕大多數星系光譜都存在紅移或藍移現象,并且越遠的星系其光譜紅移值越大。根據多普勒效應:星系光譜存在紅移說明星系正離我們遠去,星系光譜存在藍移說明星系正向著我們運動。需要指出的是越遠的星系紅移值也越大,看起來所有的星系都好象以銀河系為中心向外爆炸形成的一樣,越遠的星系離開我們的速度也越大。鑒于此有人提出宇宙大爆炸假說:認為宇宙是由150億年前發生的一次大爆炸形成的,人類居住的銀河系則是宇宙的中心。可是人們在觀測銀河系和河外星系時,卻并沒有發現銀河系有什么特別之處。有人據此懷疑宇宙大爆炸假說;也有人從星系的演化推算出宇宙的年齡大于150億年;還有人認為若宇宙大爆炸假說是正確的,那么宇宙輻射在各個方向上就會表現出各向異性;更有人擔心宇宙的膨脹沒有盡頭,遂認為宇宙的膨脹和收縮是交替進行的……。但不管怎樣,大部分人還是相信“眼見為實”,由星系光譜的紅移現象承認了宇宙大爆炸假說。更有人把紅移現象與宇宙背景輻射和宇宙元素豐度并作宇宙大爆炸假說的三大支柱。那么宇宙是否發生過爆炸并仍在向外擴張,年齡是否只有150億年呢?非也!
1.星系光譜紅移原因
20世紀初,當人們用望遠鏡觀測銀河系以外的星系時,發現絕大多數星系光譜都有紅移現象,并且越遠的星系其光譜紅移值越大。有人認為星系光譜紅移是因為星系正在離我們遠去,從而得出這樣的結論:所有的星系都是以我們銀河系為中心向外爆炸后形成的,越遠的星系離開我們的速度也越大;宇宙中所有的星系都在彼此分離,并且越遠的星系相互分離的速度越大。值得一提的是,我們銀河系正處在爆炸中心,足以值得我們自豪的是:銀河系是宇宙中獨一無二的星系—因為它是宇宙的中心。更讓我們驚奇的是,銀河系自身也在不斷運動著,然而無論它運動到哪里,它始終是銀河系的中心。我們解釋不了銀河系為什么是宇宙的中心,因為銀河系也和其它星系一樣,并沒有什么特別之處。有人以為,銀河系處于宇宙的中心是一個巧合,雖然銀河系從上個世紀至今一直在不斷運動,但它走過的距離和整個宇宙空間的尺寸比起來是微不足道的,所以銀河系目前仍然處在宇宙的中心,這種看法未免有些牽強。因為人們在觀測近處的星系時,發現近處的星系并沒有相互分離的趨勢,并且也沒有證據表明近處的星系正在以某一個中心為起點向外膨脹。因此“銀河中心說”頗值得懷疑。還有的人雖然承認宇宙大爆炸假說,但不承認“銀河中心說”,他們不認為銀河系是宇宙的中心。這種觀點同樣也是站不住腳的。我們可以這樣分析:如果宇宙大爆炸假說是正確的,那么宇宙中所有的星系必定在以某一個中心為起點向外膨脹,星系之間彼此互相分離。目前我們觀測到近處的星系并沒有相互分離的趨勢,并且也沒有證據表明近處的星系在以某一個中心為起點向外膨脹。倘若我們不是在宇宙的中心而是處于偏離宇宙中心的任一點處,因為在我們周圍的星系都沒有相互分離的趨勢,也沒有以某一個中心為起點向外膨脹,這樣一來,倘若宇宙中任一點處的星系都沒有相互分離的趨勢,那么整個宇宙也不可能在膨脹,即宇宙大爆炸假說是錯誤的。
前事不忘,后事之師。人類文明發展到今天,“地心說”和“日心說”都被證明是為科學,難道我們還要重蹈覆轍提出“銀河中心說”嗎?愚以為,我們應當承認這樣一個假設,那就是:銀河系按目前的速度運動下去,100萬年,100億年以后,我們仍然會發現自己處在宇宙的“中心”,無論我們處在宇宙的任何地方,中心也好,邊緣也好,我們都會發現宇宙中越遠的星系光譜紅移值也越大,就好象我們處在宇宙的“中心”一樣。事實上,這個“中心”是光子在宇宙空間中的傳播特性引起我們視覺上的錯誤,“眼見”未必“為實”,我們不能過分相信“眼見”的東西。
紅移現象是否由觀測者自身的運動引起的呢?不是的!如果紅移現象是由觀測者自身的運動引起的,那么我們將觀測到與我們相向運動的星系光譜將發生藍移而與我們相背運動的星系光譜將發生紅移,然而事實并非如此。再者,雖然我們“坐地日行八萬里”,但這個速度和光速比起來實在算不了什么,不至于影響觀測結果。換句話說,我們在觀測星系紅移值時,觀測者自身運動速度的影響可以忽略不計。紅移現象說明光子與觀察者之間的相對速度變小了。產生這種情況有兩種可能:第一是星系正離我們遠去,第二是光子在穿越宇宙空間時速度變小了。這兩種情況都可能導致星系光譜紅移。我們認為導致星系光譜紅移的原因是后者。光子在穿越宇宙空間時會與各種粒子(比如引力子)相互作用從而使其速度逐漸減小。當然單個粒子與光子作用時間極短,引起光子速度的改變量也是極其微小的,以致于我們觀測不到。隨著光子穿越宇宙空間距離的增大,與光子作用的粒子數目也逐漸增多,光子速度的減小量也越明顯??梢酝茰y:光子在穿越一定的宇宙空間距離后速度將減小到零。由于光子速度為零故相對我們的能量也為零,這樣的光子當然不會被我們觀測到。可見用光學法觀測宇宙空間尺度時有一個極限:150億光年(也有人認為是200億光年)。在這個尺度以外的星系發出的光子由于在沒有到達地球時速度已經降低到零,所以這樣的星系不可能被我們觀測到,至少目前還沒有辦法觀測到。也有人認為,紅移現象是由光子頻率減小引起的,即認同第一種可能:認為星系正離我們遠去。這種觀點聽起來很有道理,卻經不起分析。我們知道,星系離我們遠去時會引起光子頻率減小,但各種不同頻率光子的頻率減小量應該相同,反應在星系光譜上,各種不同頻率光子的紅移量應該相同。因此,不論星系離我們多遠,星系光譜雖然發生紅移但不應該變寬,但事實上遠處星系光譜卻被拉寬了(星系光譜不會變寬是指星系光譜中任意兩條譜線的距離恒定,雖然它們都發生了紅移,但它們移動的距離相等,因此各譜線之間的距離不變)。而且能量越小的光子紅移值越大,能量越大的光子紅移值越小。不同頻率光子的頻率減小量不同,說明紅移現象不是由光子頻率減小引起的。即第一種可能站不住腳。假設宇宙中所有的星系都是靜止的,宇宙空間中的物質是均勻分布的,那么光子穿越宇宙空間時的速度衰減量僅與其通過的空間距離有關。光子穿越的宇宙空間越長,其速度衰減量也越大。這樣星系光譜的紅移值僅與其離我們的距離有關,離我們越遠的星系紅移值也越大,就好象越遠的星系正在以越快的速度離?頤且謊U庖艙槍傷沂鏡模盒竅翟獨胍酉檔乃俁圈陀刖嗬氤燒齲?H*D,其中H為哈勃常數。實際上宇宙中各星系都在不斷運動著,宇宙空間中的物質也并非均勻分布的,造成星系光譜紅移的原因也很多,所以光譜的實際紅移值要考慮許多情況。
光的本性漫談論文
文章摘要:對于光的本性的認識,幾個世紀以來始終存在著激烈的爭論,光的波粒二象性是兩種學說相互妥協的結果。在解釋一些現象如干涉和衍射時,人們就用波動說去解釋,而對另一些現象如光電效應就用微粒說去說明。這種既是微粒又是波的存在在觀念上確實叫人們不容易接受,其原因是到現在為止還沒有一種理論能很好地把波動和微粒統一在一個模式下。本文正是從這樣一種出發點來探討光的本性。
假設有一個光源S1,在S1前放置一塊屏幕,從S1發出的光(光子)會將整個屏幕均勻的照亮。我們知道,屏幕的亮度是與落在屏幕上面的光子數的多少有關的。嚴格地說,屏幕的亮度是以垂直于屏幕的光線與屏幕的交點為中心向四周逐漸變暗的。但這種變化決不是幾率問題。證明如下:把S1放在一個半徑為R1的球的中心,假設S1在單位時間里發射出N個光子,則單位球面積上所接受的光子數等于光子數N除以球的總面積4πR12,如果把球的半徑由R1變為R2(R2>R1),則在單位球面積上所接受的光子數就變為N除以4πR22,由于R2大于R1,所以半徑為R1的球在單位球面積上接受的光子數大于R2球單位面積上的光子數。這就是為什么屏幕上的亮度是由明到暗逐漸變化的原因。當屏幕距光源的距離很大且屏幕的面積又很小時,就可以近似的認為屏幕上的光子是均勻分布的。
現在把另一個相干光源S2放在靠近S1的地方,情況有了變化。在垂直兩個光源的平面上出現了明暗相間的圓環,而在平行兩個光源的平面上,則出現了明暗相間的條紋見圖一,這就是人們所說的光的干涉條紋。因為干涉現象是波動的最主要特征,所以這也就成了光具有波動性的最有力證據之一。我們知道機械波是振動在媒質中的傳播,當有兩列相干波源存在時,媒質中任意一點的振動是兩列波各自到達這一點時波的疊加。當到達這一點的兩列波的相位相同時,則在這一點上的振幅最大,如果兩列波的相位相差1800時,則振動的振幅相互抵消,這樣就形成了有規則的干涉條紋。經典光學正是套用機械波的方法證明光的干涉條紋的,而傳播光的媒質以太已被證明是根本不存在的,這樣用機械波的方法證明光的干涉條紋也就顯得比較牽強。量子力學在解釋干涉條紋時則采用的是幾率波的方法,認為亮的地方是光子出現幾率多的地方,暗的地方則是光子出現幾率少的地方。問題是當只有一個光源時,光子是均勻分布在屏幕上的,而當存在另一個相干光源時,按照量子理論光子就會集中出現在一些地方而不去另一些地方,幾率的解釋是不能使人心悅誠服地接受的。愛因斯坦曾用上帝不擲骰子來表達他對用幾率描述單個粒子行為的厭惡。這就是目前對于光的干涉現象的兩種正統解釋方法。我們對于光本性的認識是否還存在其它我們沒有考慮到的因素,是否還存在其它的證明方法來統一光的波粒二象性即用一種理論解釋來解釋波動性和粒子性呢?
為了找到這種新的理論,在此我們不得不在現有光量子理論基礎上進行一些必要的修正即單個光量子的能量是變化的,光子的能量和質量是相互轉化的,轉化的頻率就是光的頻率。頻率快光子的能量大質量小,相反,頻率慢則光子的能量小質量大,這樣光子在空間所走的路程就形成了一條類波的軌跡。在論證光的干涉現象之前,我們先對光源進行定義。單頻率點光源---頻率單一且所有光子在離開光源時的狀態(相位)都相同。單頻率點光源具有這樣兩個特點,其一在距光源某一點的空間位置上,光子的狀態不隨時間變化。其二光子的狀態隨距點光源的距離作周期變化。光的波長指的是光子在一個周期的時間內在空間運行的距離。
我們在x軸上設置兩個點光源S1和S2,如圖一所示。令P為垂直平面上的一點,從P點到S1和S2的光程差PS1-PS2為波長的某個正數倍ml(m=±1,2,3,…)。從S1和S2出發的兩列光子,將同相地達到P點,狀態相同。再令Q為垂直平面上的另一點,從Q到S1和S2的光程差也為ml。過P和Q點做一條曲線,使得這曲線上所有過XO的垂直平面內的點的軌跡都具有這樣的性質,即這條曲線上任意一點到S1和S2的距離之差為常數,根據解析幾何我們知道,這曲線是一條雙曲線。如果我們設想這一雙曲線以直線XO為軸旋轉,則它將掃出一個曲面,叫做雙曲面。我們看到,在這曲面上的任意一點,來自S1和S2的光子始終都是同相位的(相位差保持不變),光子在曲面上的每一點的狀態是一定的,沿曲面上的點的狀態是周期變化的。由于光的波長很短,光子沿曲面的這種周期變化是不容易被觀測到。
同理,我們令T為垂直平面上的另一點(圖中未畫出),從T點到S1和S2的光程差TS1-TS2為波長的l/2×(2m+1)倍(m=±1,2,3,…)。從S1和S2出發的兩列光子,將以1800的相位差達到T點。再令V為垂直平面上的另一點(圖中未畫出),從V到S1和S2的光程差也為道長l/2×(2m+1)倍。過T和V做一條曲線使這曲線上任一點到兩定點S1和S2的距離之差為常數,這曲線也是一條雙曲線,以XO為軸旋轉同樣將掃出一雙曲面。所不同的是來自S1和S2的光子到達這曲面上的任意一點的相位差始終為1800,疊加后的最終狀態是一個恒定的值。
科學技術發展論文
摘要文章介紹了中國科學技術大學的量子信息科學研究是如何興起和發展的;著重介紹了在量子信息的基礎理論、量子密碼、量子糾纏、量子隱形傳態、量子處理器和量子信息的應用等方面所取得的研究成果.
關鍵詞量子信息,量子糾纏,量子通信,量子計算
1引言
上世紀80年代,正當電子計算機按每18個月運行速度翻一番的摩爾定律而蓬勃發展之際,物理學家就杞人憂天地問:摩爾定律是否會終結?他們的研究結論是:摩爾定律必然會失效,而量子計算機可望成為后摩爾時代的新型計算工具.當時信息領域的科學家們對此并不予理會和關注,因為其時摩爾定律正處于輝煌的頂盛時期.然而,物理學家們仍然孜孜不倦地努力,終于誕生了量子信息這門新興交叉學科.
1994年,Shor提出量子并行算法[1],并證明可用來實現大數因子分解,從而輕易地攻破目前廣泛使用的RSA公開密碼體系,這門新興學科的巨大威力震驚了整個國際學術界,并引起政界、軍界和商界的極大關注,從此量子信息科學便迎來迅猛發展的新時期,迄今方興未艾!
我們在上世紀90年代量子信息剛剛在國際上悄然興起之際就投入到這個新興領域的研究行列之中,并于1997年和1998年先后在《Phys.Rev.Lett.》上提出“量子避錯編碼原理”和“量子概率克隆原理”,引起國際學術界的高度重視.1999年,中國科學院開始在我校創建國內第一個從事量子信息研究的量子信息重點實驗室,這個極富有前瞻性的戰略部署開辟了我校量子信息研究的新局面.在此之前,自我回國歸來所組建的研究小組只有一臺電腦,我們坐著冷板凳,默默耕耘了15年之久.2001年作為首席科學家單位,我校承擔了科技部“國家重點基礎研究發展計劃”項目(“973”項目):“量子通信與量子信息技術”,這個由國內17個單位50多位學術骨干組成的研究團隊不僅取得一系列重要成果,而且培養出許多杰出的年青學術骨干,在其后國家重點基礎研究計劃“量子調控”的實施中由此研究團隊衍生出5位首席科學家.
光線干涉現象論文
文章摘要:對于光的本性的認識,幾個世紀以來始終存在著激烈的爭論,光的波粒二象性是兩種學說相互妥協的結果。在解釋一些現象如干涉和衍射時,人們就用波動說去解釋,而對另一些現象如光電效應就用微粒說去說明。這種既是微粒又是波的存在在觀念上確實叫人們不容易接受,其原因是到現在為止還沒有一種理論能很好地把波動和微粒統一在一個模式下。本文正是從這樣一種出發點來探討光的本性。
假設有一個光源S1,在S1前放置一塊屏幕,從S1發出的光(光子)會將整個屏幕均勻的照亮。我們知道,屏幕的亮度是與落在屏幕上面的光子數的多少有關的。嚴格地說,屏幕的亮度是以垂直于屏幕的光線與屏幕的交點為中心向四周逐漸變暗的。但這種變化決不是幾率問題。證明如下:把S1放在一個半徑為R1的球的中心,假設S1在單位時間里發射出N個光子,則單位球面積上所接受的光子數等于光子數N除以球的總面積4πR12,如果把球的半徑由R1變為R2(R2>R1),則在單位球面積上所接受的光子數就變為N除以4πR22,由于R2大于R1,所以半徑為R1的球在單位球面積上接受的光子數大于R2球單位面積上的光子數。這就是為什么屏幕上的亮度是由明到暗逐漸變化的原因。當屏幕距光源的距離很大且屏幕的面積又很小時,就可以近似的認為屏幕上的光子是均勻分布的。
現在把另一個相干光源S2放在靠近S1的地方,情況有了變化。在垂直兩個光源的平面上出現了明暗相間的圓環,而在平行兩個光源的平面上,則出現了明暗相間的條紋見圖一,這就是人們所說的光的干涉條紋。因為干涉現象是波動的最主要特征,所以這也就成了光具有波動性的最有力證據之一。我們知道機械波是振動在媒質中的傳播,當有兩列相干波源存在時,媒質中任意一點的振動是兩列波各自到達這一點時波的疊加。當到達這一點的兩列波的相位相同時,則在這一點上的振幅最大,如果兩列波的相位相差1800時,則振動的振幅相互抵消,這樣就形成了有規則的干涉條紋。經典光學正是套用機械波的方法證明光的干涉條紋的,而傳播光的媒質以太已被證明是根本不存在的,這樣用機械波的方法證明光的干涉條紋也就顯得比較牽強。量子力學在解釋干涉條紋時則采用的是幾率波的方法,認為亮的地方是光子出現幾率多的地方,暗的地方則是光子出現幾率少的地方。問題是當只有一個光源時,光子是均勻分布在屏幕上的,而當存在另一個相干光源時,按照量子理論光子就會集中出現在一些地方而不去另一些地方,幾率的解釋是不能使人心悅誠服地接受的。愛因斯坦曾用上帝不擲骰子來表達他對用幾率描述單個粒子行為的厭惡。這就是目前對于光的干涉現象的兩種正統解釋方法。我們對于光本性的認識是否還存在其它我們沒有考慮到的因素,是否還存在其它的證明方法來統一光的波粒二象性即用一種理論解釋來解釋波動性和粒子性呢?
為了找到這種新的理論,在此我們不得不在現有光量子理論基礎上進行一些必要的修正即單個光量子的能量是變化的,光子的能量和質量是相互轉化的,轉化的頻率就是光的頻率。頻率快光子的能量大質量小,相反,頻率慢則光子的能量小質量大,這樣光子在空間所走的路程就形成了一條類波的軌跡。在論證光的干涉現象之前,我們先對光源進行定義。單頻率點光源---頻率單一且所有光子在離開光源時的狀態(相位)都相同。單頻率點光源具有這樣兩個特點,其一在距光源某一點的空間位置上,光子的狀態不隨時間變化。其二光子的狀態隨距點光源的距離作周期變化。光的波長指的是光子在一個周期的時間內在空間運行的距離。
我們在x軸上設置兩個點光源S1和S2,如圖一所示。令P為垂直平面上的一點,從P點到S1和S2的光程差PS1-PS2為波長的某個正數倍ml(m=±1,2,3,…)。從S1和S2出發的兩列光子,將同相地達到P點,狀態相同。再令Q為垂直平面上的另一點,從Q到S1和S2的光程差也為ml。過P和Q點做一條曲線,使得這曲線上所有過XO的垂直平面內的點的軌跡都具有這樣的性質,即這條曲線上任意一點到S1和S2的距離之差為常數,根據解析幾何我們知道,這曲線是一條雙曲線。如果我們設想這一雙曲線以直線XO為軸旋轉,則它將掃出一個曲面,叫做雙曲面。我們看到,在這曲面上的任意一點,來自S1和S2的光子始終都是同相位的(相位差保持不變),光子在曲面上的每一點的狀態是一定的,沿曲面上的點的狀態是周期變化的。由于光的波長很短,光子沿曲面的這種周期變化是不容易被觀測到。
同理,我們令T為垂直平面上的另一點(圖中未畫出),從T點到S1和S2的光程差TS1-TS2為波長的l/2×(2m+1)倍(m=±1,2,3,…)。從S1和S2出發的兩列光子,將以1800的相位差達到T點。再令V為垂直平面上的另一點(圖中未畫出),從V到S1和S2的光程差也為道長l/2×(2m+1)倍。過T和V做一條曲線使這曲線上任一點到兩定點S1和S2的距離之差為常數,這曲線也是一條雙曲線,以XO為軸旋轉同樣將掃出一雙曲面。所不同的是來自S1和S2的光子到達這曲面上的任意一點的相位差始終為1800,疊加后的最終狀態是一個恒定的值。