數字農業信息管理研究

時間:2022-10-25 07:59:00

導語:數字農業信息管理研究一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。

數字農業信息管理研究

摘要:數字農業中大量時空數據分散在異構系統中,有著不同格式規范、概念術語、數學模型和分析推理方法。采用時空推理、本體論、語義Web和專家系統等技術建立一個數字農業時空信息管理平臺,對多源、異構的農業時空數據和推理分析方法進行集中統一的規范化管理。基于該平臺構建數字農業應用系統更加方便快捷。

關鍵詞:數字農業;時空推理;專家系統

0引言

數字農業應用涉及大量的氣象、環境、水文、地質、土壤等領域的時空數據。這些時空數據分散在異構系統中,有著不同的數據格式和規范,采用不同的概念和術語,基于不同的數學模型和分析推理方法。這些多領域時空信息對農業生產、決策均起著重要作用。但是以前由于缺乏高效、合理的技術手段,即使付出很高的代價,也很難將這些時空信息完整無損地共享和融合集成到數字農業應用中,在很大程度上制約了數字農業的應用發展。同時GIS等商業軟件平臺成本較高也不利于大規模應用推廣。

為此,本文基于自主版權GIS、專家系統等系統軟件,應用時空推理、本體論、語義Web、關系數據挖掘和專家系統等技術,建立一個數字農業時空信息智能管理平臺,對多源、異構的數字農業時空數據和推理分析方法進行集中統一的規范化管理,便于在實際應用中進行融合、集成和共享。基于該平臺快速建立起了數字化測土施肥系統、大豆種植標準化管理系統、無公害水果蔬菜栽培指導系統等一批智能應用系統。這些應用系統精確控制農田每一地塊種子、化肥和農藥的施用量,在提高作物產量的同時,能夠實現精確控制農業生產過程,有效降低成本,充分保證農業資源科學地綜合開發利用,減少和防止對環境和生態的污染破壞,保持農業生態環境的良性循環,是實現“綠色農業”的重要途徑。

1主要關鍵技術研究現狀

1.1數字農業

數字農業是在“數字地球”的基礎上提出并發展的,是21世紀新型的農業模式和挑戰性的國家目標,包括精準農業、虛擬農業等內容,其核心是精準農業。以3S技術應用為核心的數字農業空間信息管理平臺開發研究是數字農業研究的突破口[1,2]。美國于20世紀80年代初提出數字農業的概念,它是針對農業生產穩定性差、技術措施差異程度大等情況,運用衛星全球定位系統控制位置,用計算機精確定量,把農業技術措施的差異從地塊水平精確到平方厘米水平,從而極大地提高種子、化肥、農藥等農業資源的利用率,提高農產量,減少環境污染。法國農業部植保總局建立了全國范圍內的病蟲測報計算機網絡系統。日本農林水產省建立了水稻、大豆、大麥等多種作物品種、品系的數據庫系統。新西蘭農牧研究院利用信息技術向農場主提供土地肥力測定、動物接種免疫、草場建設、飼料質量分析等各種信息服務。同時,我國緊跟國際研究的前沿,開展了系統工程、數據庫與信息管理系統、遙感、專家系統、決策支持系統、地理信息系統等技術在農業、資源、環境和災害方面的應用研究。

1.2時空推理

近年來,時空推理(Spatio-temporalReasoning)已成為十分活躍的研究方向,在軍事、航天、能源、交通、農業、環境等領域有著廣泛的應用。近十年來我國國家基礎地理信息中心、清華大學、解放軍信息大學、中國科學院、武漢測繪科技大學、武漢大學、吉林大學等單位在時態GIS、時空數據模型、時空拓撲、時空數據庫等時空推理相關領域開展了大量研究工作。

1.3時空數據標準與共享

不同領域和應用環境對時空數據的理解存在很大差異,這造成了異構時空系統集成的困難,因此時空數據共享、互操作和標準化的研究具有重要意義。這方面研究最初從空間數據入手,近期開始向時間數據和時空結合數據發展。時空數據的共享有以下方式:

(1)空間數據交換

空間數據交換的基本思想是各系統使用自身的數據格式,通過標準格式進行數據交換。目前空間數據交換標準有:SDTS、DIGEST、RINEX等國際標準;以色列的IEF、英國的MOEPSTD、加拿大的SAIF、我國的CNSDTF等國家標準;AutoDesk的DXF、ESRI的E00、MapInfo的MIF等廠商標準。盡管各GIS軟件廠商提供了公開的交換文件格式來進行空間數據的轉換,但由于底層數據模型的不同,最終導致不同的GIS的空間數據不能無損的共享。雖然空間數據交換仍然在使用,但效果并不理想。空間數據互操作標準是當前國際公認的,比空間數據交換標準更有前途的數據標準。

(2)基于GML的空間數據互操作

開放式地理信息系統協會(OpenGISConsortium,OGC)提出了簡單要素實現規范和地理標記語言(GeographyMarkupLanguage,GML)。OGC相繼推出了一整套GIS互操作的抽象規范,包括地理幾何要素、要素集、OGIS要素、要素之間的關系、空間參考系統、定位幾何結構、存儲函數和插值、覆蓋類型及地球影像等17個抽象規范,2003年1月推出GML3.10版[3]。近年來,國內外眾多學者基于GML在空間數據共享等方面開展了大量研究。2001年Rancourt等人[4]將GML與先前所定義的空間標準進行比較,認為GML能有效地滿足空間數據交換標準。2002年,ZhangJianting等人[5]提出了一種基于GML的Internet地理信息搜索引擎。2003年,ZhangChuanrong等人[6]在網絡環境下以GML作為異構空間數據庫交換共享空間數據的格式,成功實現數據的互操作。2003年,崔希民等人[7]提出了GIS數據集成和互操作的系統架構,在數據層次上實現GIS數據的集成和互操作。2003年,張霞等人[8]提出一種基于GML構造WebGIS的框架結構,給出實現框架技術。其中采用GML作為空間數據集成格式。2004年,朱前飛等人[9]提出了一種新的基于GML的數據共享解決方案。2005年,陳傳彬等人[10]提出了基于GML的多源異構空間數據集成框架。GML數據類型較完整,支持廠家較多,相關研究豐富,是目前最有前景的時空數據標準。本文選擇GML作為農業時空數據標準。

1.4時空本體

1.4.1本體、語義Web和OWL

本體方法目前已經成為計算機科學中的一種重要方法,在語義Web、搜索引擎、知識處理平臺、異構系統集成、電子商務、自然語言理解、知識工程等領域有著重要應用。尤其是目前隨著對語義Web研究的深入,本體論方法受到了越來越多的關注,人們普遍認為它是建立語義Web的核心技術。OWL是當前最有發展前景的本體表示語言。2002年7月29日,W3C組織公布了本體描述語言(WebOntologyLanguage,OWL)的工作草案1.0版。目前工作草案的最新更新為2004年2月10日的版本[11]。

1.4.2時空本體

基于本體方法對時空建模的相關研究工作如下:

1998年,Roberto考慮了作為地理表示基礎的某些本體問題,給出了關于一般空間表示理論的某些建議[12]。2000年ZhouQ.和FikesR.定義了一種考慮時間點和時段的時間本體[13]。2000年,Córcoles基于XML定義了一個類似SQL的時空查詢語言,該語言包含八種空間算子和三種時態算子用于表達時空關系[14]。2003年,Grenon基于一階謂詞邏輯定義了時空本體,使用斯坦福大學的Protégé環境實現[15]。2003年,Bittner等人[16]提出了用于描述復雜時空過程和其中的持續實體的形式化本體。以上工作中Grenon的時空本體研究相對完整,相關研究成果已經在網上共享,本文在此基礎上開展研究,建立農業時空本體。

2主要研究內容

(1)農業時空數據規范

現階段我國還沒有公認的農業時空數據標準出臺。本文基于時空推理技術,研究通用性更強的時空數據表示模型,能表示氣象、土壤、環境、水文、地質等各領域的農業時空數據。GML是目前公認的時空數據標準,利用上述模型擴充GML,兼容中國農業科學院的“農業資源空間信息元數據的分類及編碼體系草案”等國內現有的地方性標準,構建針對數字農業中時空數據的DA-GML標準,作為數字農業基礎時空數據的規范。現有的土壤、環境等基礎空間數據庫均支持到GML格式的轉換。

(2)農業基礎時空數據庫

基于筆者自主開發的GIS平臺建立農業基礎時空數據庫,該平臺具有運行穩定、資源占用少、結構靈活、功能可裁減、成本較低、便于移植等特點。采用了時空推理技術,支持對空間和時空信息的表示和推理。通過DA-GML能夠直接從現有系統中獲取領域農業基礎時空數據,主要包括土壤數據庫、環境數據庫、氣象資料數據庫、農業生產條件數據庫、林業信息數據庫、影像數據庫等。

(3)農業時空分析方法庫與農業時空知識庫

時空推理是研究時間、空間及時空結合信息本質的技術,通過時空推理技術將現有面向農業領域的時空分析技術進行整合和規范化表示,形成農業時空分析方法庫。對領域農業時空知識進行歸納、整理,同時通過數據挖掘方法從基礎數據中提煉知識,建立農業時空知識庫。

(4)農業時空本體庫

在(2)、(3)中存儲的數據、方法和知識需要一個有效的機制進行組織和管理。就目前技術而言,本體是表達一個領域內完整的體系(概念層次、概念之間的關聯等)的最有效工具,所以本文選擇建立農業時空本體庫。具體包括本體獲取、本體管理、本體服務與展示三個模塊。使用Protégé做本體開發環境編輯。Protégé是斯坦福大學開發的基于Java的本體編輯與知識獲取工具,帶有OWL插件的Protégé可以支持OWL格式的本體編輯與輸出。

以上三個庫通過WebService方式提供基于Internet的服務,可以在線對庫中信息進行維護和檢索,并能無縫集成到應用系統中。

(5)系統體系結構

系統工作原理如圖1所示。首先,外部系統的時空數據轉換成GML格式(現在絕大多數系統支持該數據標準),進入農業基礎時空數據庫。通過本體獲取與編輯模塊將時空數據和時空知識整理,形成本體庫。外部系統的請求通過WebSer-vices發給仲裁者,仲裁者區分各類情況調用三個庫調用服務、提取數據和執行操作,結果返回給用戶。

(6)基于平臺開發農業生產智能應用系統

基于數字農業時空信息管理平臺建立數字化測土施肥系統、作物種植標準化管理系統、無公害水果蔬菜栽培指導系統等一批農業生產智能應用系統,解決實際問題。

3相關系統對比分析

3.1數字農業空間信息管理平臺

平臺基于信息和知識支持的現代農業管理的集成技術,對農田信息進行動態采集、分析、處理和輸出,從而根據農田區域差異、農事安排進行模擬分析、決策支持管理和指揮控制,并對農業生產過程的區域差異進行精確定位、動態控制等定量操作[17]。

3.2全國農業資源空間信息管理系統

全國農業資源空間信息管理系統(NASIS)實現對全國農業資源空間信息的查詢分發,具有系統管理、動態數據字典、數據檢索、查詢、數據分發、制圖、報表統計、數據分發等功能。該系統已經用于全國農作物遙感監測、農業資源調查、農業科研和農業政策信息支持服務等方面[18]。

3.3中國西部農業空間信息服務系統

計算機技術、互聯網技術的迅速發展為建立基于Web的中國西部農業空間信息服務系統提供技術支撐。本文從西部農業空間信息服務系統的數據庫構建開始,全面地介紹了系統的運行模式和數據庫訪問技術,詳細論述了系統的總體結構、平臺環境和開發實現等。

(1)基于平臺提供的開發框架,能方便、高效地建立大量的數字農業智能應用系統,基層農業科技人員也能快速開發出技術含量高的應用系統,各應用系統能互通、共享,便于升級維護。

(2)由于大量的底層服務、數據、知識和方法由平臺集中統一提供,簡化了開發數字農業應用軟件的工作,節約了成本。

4結束語

數字農業時空信息管理平臺從系統目標、適用范圍、采用技術、系統接口等方面不同于任何現有的基礎農業空間數據管理平臺,是一個概念全新的系統,定位于基礎農業空間數據管理平臺的上層,更便于開發數字農業應用。其中的本體庫等機制為將來建立農業時空數據網格奠定了良好的基礎。

參考文獻:

[1]于淑惠.數字農業及其實現技術[J].農業圖書情報學刊,2004,15(7):5-8.

[2]唐世浩,朱啟疆,閆廣建,等.關于數字農業的基本構想[J].農業現代化研究,2002,23(3):183-187.

[3]Geographymarkuplanguage(GML)[EB/OL].(2003)./techno/specs/002029PGML.html.

[4]RANCOURTM.GML:spatialdataexchangefortheinternetage[D].NewBrunswick:DepartmentofGeodesyandGeomaticsEngineering,UniversityofNewBrunswick,2001.

[5]ZHANGJianting,GRUENWALDL.AGML2basedopenarchitectureforbuildingageographicalinformationsearchengineovertheinternet[DB/OL].(2002).www.cs.ou.edu/database/documents/zg01.pdf.

[6]ZHANGChuanrong,PENGZhongren,etal.GMLbasedinteroperablegeographicaldatabases[DB/OL].(2003)./summer03/studentpapers/chuanrongzhang.pdf.

[7]崔希民,劉清旺,謝傳節,等.基于GML的多源異構空間數據集成和互操作[J].礦山測量,2003(3):47-49.