數學直覺思維養成及特征
時間:2022-04-10 11:08:00
導語:數學直覺思維養成及特征一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。
現代數學教育不僅是傳授數學知識,更重要的是培養學生的創新意識。因此,目前在數學思維活動中,人們非常注重非邏輯思維(形象思維、直覺思維、數學美感等)的培養,特別是直覺思維能力的培養,因為它具有鮮明的靈活性與創造性,常常成為提出數學新思想、創立新理論的重要前提,是數學創造的另一個重要因素。對于數學直覺的探討和培養,有助于充分發揮學生的主體作用,提高其創造力、觀察力、直覺力、想象力。
1數學直覺思維的概念
數學直覺思維就是人腦對數學及其結構關系的一種迅速的判斷與敏銳的想象,是直覺想象和直覺判斷的統一。這種想象和判斷沒有嚴格的邏輯依據,也沒有經過明顯的中間推理過程,思維者對其過程也無清晰的意識。
2直覺思維的主要特點
2.1簡約性
直覺思維是對思維對象通過豐富的想象作出的敏銳而迅速的假設、猜想或判斷,它省去了推理的中間環節,采取“跳躍式”形式,往往出現在長久沉思后的突然“醒悟”,具有下意識性和偶然性,沒有明顯的根據和思索的步驟,而是直接把握事物的整體,洞察問題實質,跳躍式地迅速指出結論,而思維怎樣出現的過程陳述不出來。它是一瞬間的思維火花,是思維者的靈感和頓悟,是思維過程的高度簡化,但卻清晰的觸及到事物的“本質”。
2.2創造性
現代社會需要創造性的人才,但我國的教材由于長期以來借鑒國外的經驗,過多的注重培養邏輯思維,所以培養的人才大多數習慣于按部就班、墨守成規,缺乏創造能力和開拓精神。直覺思維是基于研究對象整體上的把握,不專意于細節的推敲,是思維的大手筆。正是由于思維的無意識性,它的想象才是豐富的、發散的,使人的認知結構向外無限擴展,因而具有反常規律的獨創性。伊思•斯圖加特說:“直覺是真正的數學家賴以生存的東西,許多重大的發現都是基于直覺”。歐幾里得幾何學的5個公式都是基于直覺,從而建立起歐幾里得幾何學這棟輝煌的大廈;哈密頓在散步的路上激發了構造四元素的火花;阿基米德在浴室里找到了辨別王冠真假的方法;凱庫勒發現苯分子環狀結構更是一個直覺思維的成功典范。
2.3隨機性
隨機性,也稱偶然性,即在數學活動中,數學直覺思維受什么啟迪而一觸迸發,且數學念頭來去又那么“短暫”,令人難以尋覓,無論是產生還是其結果都帶有很大的偶然性,數學直覺的產生從開始到結束,是在解題者對所給問題有意識地進行思索,發散式地提供與該問題相近的信息,調動腦中的對此問題有用的信息而打開思維的大門,獲得數學直覺。所以啟發數學直覺的信息,從時間、地點、條件、機緣來看,都表現出某種隨機性。
3數學直覺思維在解決問題中的作用
數學直覺思維在問題解決中有著重要的作用,許多數學問題都是先從數與形的直覺感知中得到某種猜想,然后再進行邏輯證明的。法國數字家龐加勒曾指出,“邏輯是證明的工具,直覺是發明的工具?!睌祵W直覺思維的運用有助于提出數學新概念、新理論和新的數學思想,特別是當邏輯思維方法無能為力時,常常靠直覺來洞察本質直達核心。多年的數學教學實踐表明,直覺思維起著不可忽視的作用,主要表現在以下幾方面:
3.1有利于加強對概念的理解和洞察力在學習異面直線時,學生易把分別在兩個不同平面內的直線,錯誤地認為是異面直線,這就是由于缺乏對概念的本質屬性的直覺洞察力與判斷力所致,若加強對學生的直覺思維訓練,此類錯誤就能避免。
3.2有利于引導學生的判斷和想象能力一個成功的數學證明是許多基本運算或“演繹推理元素”的成功組合,邏輯可以幫助到達目的地,但是邏輯卻不能告訴我們,為什么這些路徑的選取與這樣的組合可以構成一條通道。這就需要引導學生必要的直覺判斷和想象力,將積存在大腦里的思維元素充分調動、組合、變換,迅速地作出決策。
3.3有利于快速搜索數學解題路徑直覺的形成離不開思維的迅速概括與高度濃縮,因此解題中直覺思維的形成常常是多種邏輯思維方法的綜合轉換、反復應用、高度壓縮產生質變的結果。例如:設單位正方形內有任意的五個點,試證明其中至少存在兩個點,它們之間的距離不大于(1/2)0.5。解本題的關鍵是用抽屜原則,把此問題與抽屜聯系起來,這個過程要借助直覺來判斷。
3.4有助于培養學生的自信力學生對數學產生興趣的原因有2種:一是教師的人格魅力,二是來自數學本身的魅力。成功可以培養一個人的自信,直覺發現伴隨著很強的“自信心”。相比其它的物資獎勵和情感激勵,這種自信更穩定、更持久。當一個問題不用通過邏輯證明的形式而是通過自己的直覺獲得,那么成功帶給他的震撼是巨大的,內心將會產生一種強大的學習鉆研動力,從而更加相信自己的能力。高斯在小學時就能解決問題“1+2+……+99+100=?”,這是基于他對數學的敏感性的超常把握,這對他一生的成功產生了不可磨滅的影響。而現在的中學生極少具有直覺意識,對有限的直覺也半信半疑,不能從整體上駕馭問題,也就無法形成自信。
4數學直覺思維的培養
4.1扎實的基礎是產生直覺的源泉直覺不是靠“機遇”,直覺的獲得雖然具有偶然性,但決不是無緣無故的憑空臆想,而是以扎實的知識為基礎。若沒有深厚的功底,是不會迸發出思維的火花。阿提雅說:“一旦你真正感到弄懂一樣東西,而且你通過大量例子以及通過與其它東西的聯系取得了處理那個問題的足夠多的經驗,對此你就會產生一種正在發展的過程是怎么回事以及什么結論應該是正確的直覺”。
4.2加強哲學及審美觀念是培養的關鍵直覺的產生基于對研究對象整體的把握,而哲學觀點有利于很好的把握事物的本質。包括數學中普遍存在的對立統一、運動變化、相互轉化、對稱性等。例如(a+b)2=a2+2ab+b2,即使沒有學過完全平方公式,也可以運用對稱的觀點判斷結論的真偽。美感和美的意識是數學直覺的本質,提高審美能力有利于培養數學事物間所有存在著的和諧關系及秩序的直覺意識,審美能力越強,則數學直覺能力也越強。狄拉克1931年從數學對稱的角度考慮,大膽的提出了反物質的假說,他認為真空中的反電子就是正電子,他還對麥克斯韋方程組提出質疑,他曾經說,如果一個物理方程在數學上看上去不美,那么這個方程的正確性是可疑的。
4.3對學生進行預測、猜測的訓練是培養的重要形式教師應在數學的概念、定理的結論推斷中,嘗試著讓學生進行非邏輯的直接預測、猜測,從而漸漸提高學生的直覺思維能力。教師應把直覺思維在課堂教學中明確提出,制定相應的活動策略,分析問題的特征,滲透直覺觀念,發展思維能力。重視直覺思維的解題研究,選擇適當的題目類型,諸如換元、數形結合、歸納猜想、反證法等,有利于培養、考察學生的直覺思維。再如選擇題,由于只要求從四個選擇項中挑選出來,省略解題過程,容許合理的猜想,有利于直覺思維的發展。
4.4設置直覺思維的意境和動機誘導對于學生的大膽設想給予充分肯定,對其合理成分及時給予鼓勵,愛護、扶植學生的自發性直覺思維,以免挫傷學生直覺思維的積極性和學生直覺思維的悟性。教師應及時因勢利導,解除學生心中的疑惑,使學生對自己的直覺產生成功的喜悅感?!案杏X走”是一句時尚用語,其實這句話里已蘊涵著直覺思維的萌芽,只不過沒有把它上升為一種思維觀念。教師應該把直覺思維冠冕堂皇的在課堂教學中明確的提出,制定相應的活動策略,從整體上分析問題的特征;重視數學思維方法的教學。
- 上一篇:促進領導干部廉潔從政實施方案
- 下一篇:物價局醫藥購銷督查工作總結