復數的概念教案
時間:2022-03-02 10:19:00
導語:復數的概念教案一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。
教學目標
(1)掌握復數的有關概念,如虛數、純虛數、復數的實部與虛部、兩復數相等、復平面、實軸、虛軸、共軛復數、共軛虛數的概念。
(2)正確對復數進行分類,掌握數集之間的從屬關系;
(3)理解復數的幾何意義,初步掌握復數集C和復平面內所有的點所成的集合之間的一一對應關系。
(4)培養學生數形結合的數學思想,訓練學生條理的邏輯思維能力.
教學建議
(一)教材分析
1、知識結構
本節首先介紹了復數的有關概念,然后指出復數相等的充要條件,接著介紹了有關復數的幾何表示,最后指出了有關共軛復數的概念.
2、重點、難點分析
(1)正確復數的實部與虛部
對于復數,實部是,虛部是.注意在說復數時,一定有,否則,不能說實部是,虛部是,復數的實部和虛部都是實數。
說明:對于復數的定義,特別要抓住這一標準形式以及是實數這一概念,這對于解有關復數的問題將有很大的幫助。
(2)正確地對復數進行分類,弄清數集之間的關系
分類要求不重復、不遺漏,同一級分類標準要統一。根據上述原則,復數集的分類如下:
注意分清復數分類中的界限:
①設,則為實數
②為虛數
③且。
④為純虛數且
(3)不能亂用復數相等的條件解題.用復數相等的條件要注意:
①化為復數的標準形式
②實部、虛部中的字母為實數,即
(4)在講復數集與復平面內所有點所成的集合一一對應時,要注意:
①任何一個復數都可以由一個有序實數對()唯一確定.這就是說,復數的實質是有序實數對.一些書上就是把實數對()叫做復數的.
②復數用復平面內的點Z()表示.復平面內的點Z的坐標是(),而不是(),也就是說,復平面內的縱坐標軸上的單位長度是1,而不是.由于=0+1·,所以用復平面內的點(0,1)表示時,這點與原點的距離是1,等于縱軸上的單位長度.這就是說,當我們把縱軸上的點(0,1)標上虛數時,不能以為這一點到原點的距離就是虛數單位,或者就是縱軸的單位長度.
③當時,對任何,是純虛數,所以縱軸上的點()()都是表示純虛數.但當時,是實數.所以,縱軸去掉原點后稱為虛軸.
由此可見,復平面(也叫高斯平面)與一般的坐標平面(也叫笛卡兒平面)的區別就是復平面的虛軸不包括原點,而一般坐標平面的原點是橫、縱坐標軸的公共點.
④復數z=a+bi中的z,書寫時小寫,復平面內點Z(a,b)中的Z,書寫時大寫.要學生注意.
(5)關于共軛復數的概念
設,則,即與的實部相等,虛部互為相反數(不能認為與或是共軛復數).
教師可以提一下當時的特殊情況,即實軸上的點關于實軸本身對稱,例如:5和-5也是互為共軛復數.當時,與互為共軛虛數.可見,共軛虛數是共軛復數的特殊情行.
(6)復數能否比較大小
教材最后指出:“兩個復數,如果不全是實數,就不能比較它們的大小”,要注意:
①根據兩個復數相等地定義,可知在兩式中,只要有一個不成立,那么.兩個復數,如果不全是實數,只有相等與不等關系,而不能比較它們的大小.
②命題中的“不能比較它們的大小”的確切含義是指:“不論怎樣定義兩個復數間的一個關系‘<’,都不能使這關系同時滿足實數集中大小關系地四條性質”:
(i)對于任意兩個實數a,b來說,a
(ii)如果a
(iii)如果a
(iv)如果a0,那么ac
(二)教法建議
1.要注意知識的連續性:復數是二維數,其幾何意義是一個點,因而注意與平面解析幾何的聯系.
2.注意數形結合的數形思想:由于復數集與復平面上的點的集合建立了一一對應關系,所以用“形”來解決“數”就成為可能,在本節要注意復數的幾何意義的講解,培養學生數形結合的數學思想.
3.注意分層次的教學:教材中最后對于“兩個復數,如果不全是實數就不能本節它們的大小”沒有證明,如果有學生提出來了,在課堂上不要給全體學生證明,可以在課下給學有余力的學生進行解答.
復數的有關概念
教學目標
1.了解復數的實部,虛部;
2.掌握復數相等的意義;
3.了解并掌握共軛復數,及在復平面內表示復數.
教學重點
復數的概念,復數相等的充要條件.
教學難點
用復平面內的點表示復數M.
教學用具:直尺
課時安排:1課時
教學過程:
一、復習提問:
1.復數的定義。
2.虛數單位。
二、講授新課
1.復數的實部和虛部:
復數中的a與b分別叫做復數的實部和虛部。
2.復數相等
如果兩個復數與的實部與虛部分別相等,就說這兩個復數相等。
即:的充要條件是且。
例如:的充要條件是且。
例1:已知其中,求x與y.
解:根據復數相等的意義,得方程組:
∴
例2:m是什么實數時,復數,
(1)是實數,(2)是虛數,(3)是純虛數.
解:
(1)∵時,z是實數,
∴,或.
(2)∵時,z是虛數,
∴,且
(3)∵且時,
z是純虛數.∴
3.用復平面(高斯平面)內的點表示復數
復平面的定義
建立了直角坐標系表示復數的平面,叫做復平面.
復數可用點來表示.(如圖)其中x軸叫實軸,y軸除去原點的部分叫虛軸,表示實數的點都在實軸上,表示純虛數的點都在虛軸上。原點只在實軸x上,不在虛軸上.
4.復數的幾何意義:
復數集c和復平面所有的點的集合是一一對應的.
5.共軛復數
(1)當兩個復數實部相等,虛部互為相反數時,這兩個復數叫做互為共軛復數。(虛部不為零也叫做互為共軛復數)
(2)復數z的共軛復數用表示.若,則:;
(3)實數a的共軛復數仍是a本身,純虛數的共軛復數是它的相反數.
(4)復平面內表示兩個共軛復數的點z與關于實軸對稱.
三、練習1,2,3,4.
四、小結:
1.在理解復數的有關概念時應注意:
(1)明確什么是復數的實部與虛部;
(2)弄清實數、虛數、純虛數分別對實部與虛部的要求;
(3)弄清復平面與復數的幾何意義;
(4)兩個復數不全是實數就不能比較大小。
2.復
數集與復平面上的點注意事項:
(1)復數中的z,書寫時小寫,復平面內點Z(a,b)中的Z,書寫時大寫。
(2)復平面內的點Z的坐標是(a,b),而不是(a,bi),也就是說,復平面內的縱坐標軸上的單位長度是1,而不是i。
(3)表示實數的點都在實軸上,表示純虛數的點都在虛軸上。
(4)復數集C和復平面內所有的點組成的集合一一對應:
五、作業1,2,3,4,
六、板書設計:
§8,2復數的有關概念
1定義:例13定義:4幾何意義:
2定義:例25共軛復數: