指向?qū)W生數(shù)學(xué)理解數(shù)學(xué)實(shí)驗(yàn)研究

時(shí)間:2022-05-19 08:56:07

導(dǎo)語(yǔ):指向?qū)W生數(shù)學(xué)理解數(shù)學(xué)實(shí)驗(yàn)研究一文來(lái)源于網(wǎng)友上傳,不代表本站觀點(diǎn),若需要原創(chuàng)文章可咨詢(xún)客服老師,歡迎參考。

指向?qū)W生數(shù)學(xué)理解數(shù)學(xué)實(shí)驗(yàn)研究

摘要:數(shù)學(xué)實(shí)驗(yàn)是一種基于學(xué)習(xí)歷程的探索與建構(gòu)。小學(xué)階段開(kāi)展數(shù)學(xué)實(shí)驗(yàn),可以幫助學(xué)生經(jīng)歷情境、探索問(wèn)題,合理開(kāi)展數(shù)學(xué)學(xué)習(xí)中的各項(xiàng)探究活動(dòng),進(jìn)一步豐富小學(xué)生對(duì)數(shù)學(xué)知識(shí)與規(guī)律的深刻理解,加深對(duì)數(shù)學(xué)新知識(shí)產(chǎn)生、形成和發(fā)展的深度體驗(yàn)。

關(guān)鍵詞:數(shù)學(xué)實(shí)驗(yàn);問(wèn)題情境;雙重建構(gòu)

美國(guó)數(shù)學(xué)家哈莫斯認(rèn)為:“問(wèn)題是數(shù)學(xué)的心臟,問(wèn)題解決是數(shù)學(xué)思維的核心。”數(shù)學(xué)實(shí)驗(yàn)作為數(shù)學(xué)教育發(fā)展的產(chǎn)物,是一種以問(wèn)題解決為途徑的教學(xué)方式與手段,受到人們?cè)絹?lái)越多的重視。郭慶松認(rèn)為:“數(shù)學(xué)實(shí)驗(yàn)是在數(shù)學(xué)思想和數(shù)學(xué)教學(xué)理論指導(dǎo)下,小學(xué)生借助實(shí)物和工具,通過(guò)對(duì)實(shí)驗(yàn)素材進(jìn)行‘?dāng)?shù)學(xué)化’的操作來(lái)驗(yàn)證數(shù)學(xué)結(jié)論、建構(gòu)數(shù)學(xué)概念、探索數(shù)學(xué)規(guī)律、解決數(shù)學(xué)問(wèn)題的一種數(shù)學(xué)學(xué)習(xí)方式。”[1]數(shù)學(xué)課程標(biāo)準(zhǔn)明確指出,數(shù)學(xué)學(xué)習(xí)既要關(guān)注學(xué)生知識(shí)與技能的獲得,也要關(guān)注數(shù)學(xué)思考、問(wèn)題解決與情感態(tài)度的同步發(fā)展。學(xué)生作為主體參與學(xué)習(xí),不再只是為了積累知識(shí)、獲得數(shù)學(xué)技能,也要經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明、綜合實(shí)踐等數(shù)學(xué)活動(dòng),發(fā)展合情推理和演繹推理的能力,不斷深入體會(huì)數(shù)學(xué)的基本思想和思維方式。不難看出,在小學(xué)階段開(kāi)展數(shù)學(xué)實(shí)驗(yàn),有助于落實(shí)新課程理念與學(xué)科精神,進(jìn)一步豐富小學(xué)生對(duì)數(shù)學(xué)知識(shí)與規(guī)律的深刻理解,加深對(duì)數(shù)學(xué)新知產(chǎn)生、形成和發(fā)展的深度體驗(yàn),引導(dǎo)學(xué)生進(jìn)行發(fā)現(xiàn)學(xué)習(xí)、認(rèn)知學(xué)習(xí),實(shí)現(xiàn)知識(shí)結(jié)構(gòu)與認(rèn)知結(jié)構(gòu)的雙重建構(gòu)。

一、兼顧過(guò)程與教學(xué)結(jié)果的數(shù)學(xué)實(shí)驗(yàn)

“重視過(guò)程與重視結(jié)果”是個(gè)老生常談的問(wèn)題,隨著課程改革的推進(jìn),教師的認(rèn)識(shí)已發(fā)生了較大轉(zhuǎn)變,課堂教學(xué)也出現(xiàn)了積極變化,不再只唯結(jié)果或唯過(guò)程,而是努力做到兼顧。然而,在具體實(shí)踐層面,真正能做到“處理好過(guò)程與結(jié)果的關(guān)系”的教師卻不多。作為人腦對(duì)客觀世界的主觀反映,知識(shí)通常可以分為陳述性知識(shí)和程序性知識(shí),這兩者有共同之處,即都是顯性知識(shí),本質(zhì)上都是結(jié)果性知識(shí)。不同之處在于陳述性知識(shí)更多反映事實(shí)與結(jié)果,而程序性知識(shí)則是規(guī)則與順序。除此之外,伴隨著教學(xué)過(guò)程的展開(kāi),學(xué)生還會(huì)獲得一類(lèi)以體驗(yàn)感悟?yàn)橹饕攸c(diǎn)的體驗(yàn)性知識(shí),包括對(duì)知識(shí)產(chǎn)生、發(fā)展、理解、聯(lián)系、應(yīng)用等方面的體驗(yàn)與體悟,這是一種隱形知識(shí),也可以稱(chēng)之為過(guò)程性知識(shí)。顯然,良好而完整的數(shù)學(xué)教學(xué)理應(yīng)將結(jié)果性知識(shí)與過(guò)程性知識(shí)融通結(jié)合,在有限的課堂教學(xué)中做好教學(xué)設(shè)計(jì),讓學(xué)生既獲得結(jié)果性知識(shí)(即數(shù)學(xué)的基礎(chǔ)知識(shí)與基本技能),又獲得過(guò)程性知識(shí)(即了解理解知識(shí)產(chǎn)生的來(lái)龍去脈,形成數(shù)學(xué)活動(dòng)體驗(yàn),積累相關(guān)經(jīng)驗(yàn)),對(duì)提升學(xué)生數(shù)學(xué)思維及數(shù)學(xué)素養(yǎng)大有裨益。比如在教學(xué)蘇教版《數(shù)學(xué)》四年級(jí)下冊(cè)“三角形內(nèi)角和”時(shí),對(duì)三角形內(nèi)角和是180°這一結(jié)果性知識(shí),如果僅僅通過(guò)有意義傳授的教學(xué)方式,可能學(xué)生很快就能記住知識(shí)的結(jié)果,加以練習(xí)后也能熟練準(zhǔn)確地運(yùn)用以解決問(wèn)題。但是學(xué)生對(duì)知識(shí)產(chǎn)生源頭的好奇、對(duì)知識(shí)所蘊(yùn)含規(guī)律的理解卻相當(dāng)缺乏,這樣的教學(xué)設(shè)計(jì)難以有效培養(yǎng)學(xué)生數(shù)學(xué)基本思想,積累數(shù)學(xué)基本活動(dòng)經(jīng)驗(yàn)。從數(shù)學(xué)實(shí)驗(yàn)教學(xué)的角度出發(fā),我們可以先提供一組學(xué)習(xí)材料(任意幾個(gè)三角形紙片和一副三角尺)給學(xué)生,讓學(xué)生回顧三角形的特征,整理上節(jié)課三角形三邊關(guān)系的研究歷程與研究方法,從而自然引領(lǐng)學(xué)生進(jìn)入新的學(xué)習(xí)內(nèi)容,即繼續(xù)研究三角形三個(gè)角中蘊(yùn)含的規(guī)律。接著通過(guò)師生交流,形成實(shí)驗(yàn)方案:①操作:通過(guò)“量”“算”“折”“剪”“拼”等具體活動(dòng),得出每個(gè)三角形的內(nèi)角和;②記錄:匯總記錄實(shí)驗(yàn)操作的數(shù)據(jù),形成完整的表格;③觀察:通過(guò)觀察數(shù)據(jù),得出發(fā)現(xiàn);④總結(jié):歸納得出的發(fā)現(xiàn),形成初步結(jié)論;⑤論證:通過(guò)任意舉例驗(yàn)證及尋找反例,完善不完全歸納法得出的初步結(jié)論,形成最終的實(shí)驗(yàn)結(jié)論;⑥交流:暢談實(shí)驗(yàn)結(jié)論(三角形內(nèi)角和為180度)的價(jià)值及可能的應(yīng)用。以上借助數(shù)學(xué)實(shí)驗(yàn)進(jìn)行的教學(xué)設(shè)計(jì),其目的不僅僅是積累知識(shí),而是培養(yǎng)學(xué)生成為知識(shí)的探索者,努力發(fā)展學(xué)生探索問(wèn)題、研究問(wèn)題及解決問(wèn)題的能力。

二、合理融通直觀與抽象的數(shù)學(xué)實(shí)驗(yàn)

由于數(shù)學(xué)學(xué)科知識(shí)存在抽象性,所以對(duì)以形象思維為主的小學(xué)生而言,數(shù)學(xué)概念、規(guī)則的理解內(nèi)化比較困難。數(shù)學(xué)實(shí)驗(yàn)教學(xué)是將抽象理論變得直觀化、可視化的一種教學(xué)方式,其過(guò)程是學(xué)生在教師的引導(dǎo)下,親身經(jīng)歷一個(gè)概念、規(guī)則的形成過(guò)程,通過(guò)動(dòng)作思維和邏輯思維感悟知識(shí)發(fā)生過(guò)程、理解知識(shí)結(jié)果[2]。為了達(dá)成以上教學(xué)目的,教師在具體教學(xué)時(shí),可以創(chuàng)設(shè)學(xué)生熟悉的生活情境,并借助問(wèn)題解決的形式逐一展開(kāi),通過(guò)數(shù)學(xué)實(shí)驗(yàn)的開(kāi)展逐步揭示數(shù)學(xué)概念,手腦口并用,多感官參與,從而實(shí)現(xiàn)直觀與抽象的融通。比如教學(xué)蘇教版《數(shù)學(xué)》三年級(jí)上冊(cè)“分?jǐn)?shù)的認(rèn)識(shí)(一)”時(shí),學(xué)生通過(guò)例題分蛋糕,初步認(rèn)識(shí)了蛋糕的二分之一(21),頭腦中朦朧建立起分?jǐn)?shù)概念后,為了加深學(xué)生對(duì)分?jǐn)?shù)意義的內(nèi)化理解,可以開(kāi)展創(chuàng)造分?jǐn)?shù)21的數(shù)學(xué)實(shí)驗(yàn)活動(dòng)。具體做法為:①操作:給學(xué)生提供數(shù)學(xué)實(shí)驗(yàn)素材(同樣的長(zhǎng)方形紙片),讓其通過(guò)折紙創(chuàng)造出這張紙的21來(lái);②觀察:為什么四種方式都表示出了這張紙的21(如圖1);③交流:怎么得到分?jǐn)?shù)21的?為什么這樣的操作,就能得到這張紙的21,四種方法間的共同點(diǎn)是什么?④思考:還有其他的操作方法嗎?還能怎樣創(chuàng)造?(如圖2,只要過(guò)長(zhǎng)方形紙的中心折紙,都能平均分成2份,其中的一份就可以表示為這張紙的21);⑤總結(jié):分?jǐn)?shù)是如何產(chǎn)生的?(師生共同歸納出分?jǐn)?shù)的意義)以上的數(shù)學(xué)實(shí)驗(yàn)教學(xué),將知識(shí)形成的過(guò)程及背后的思考,以直觀、形象的方式展現(xiàn)出來(lái),通過(guò)數(shù)形結(jié)合充分體現(xiàn)了分?jǐn)?shù)這一抽象概念下的豐富內(nèi)涵,體現(xiàn)了“做中學(xué)”所特有的學(xué)習(xí)價(jià)值,幫助學(xué)生更深刻地理解數(shù)學(xué)知識(shí)的實(shí)質(zhì)。對(duì)學(xué)生而言,類(lèi)似數(shù)學(xué)實(shí)驗(yàn)的開(kāi)展,讓學(xué)生動(dòng)手操作、動(dòng)腦思維,獲得的知識(shí)會(huì)更加牢固地融入到已有的知識(shí)結(jié)構(gòu)中去。

三、深化認(rèn)識(shí)歸納與演繹的數(shù)學(xué)實(shí)驗(yàn)

波利亞曾經(jīng)指出:“數(shù)學(xué)有兩個(gè)方面,一方面它是歐幾里得式的嚴(yán)謹(jǐn)科學(xué),從這個(gè)方面來(lái)看,數(shù)學(xué)像是一門(mén)系統(tǒng)的演繹科學(xué),但另一方面,創(chuàng)造過(guò)程中的數(shù)學(xué),看起來(lái)卻像是一門(mén)試驗(yàn)性的歸納科學(xué)。”[3]事實(shí)上,歸納與演繹是數(shù)學(xué)學(xué)習(xí)過(guò)程中兩種基本的思維方式,數(shù)學(xué)學(xué)習(xí)通常是經(jīng)過(guò)示例觀察,從簡(jiǎn)單、具體、特殊的研究中,發(fā)現(xiàn)并總結(jié)出一般結(jié)論,然后再演繹應(yīng)用到解決問(wèn)題上,或者作為后續(xù)演繹推理的理論支撐。兩者相輔相成,有機(jī)結(jié)合,共同促進(jìn)學(xué)生推理能力的提高,推動(dòng)學(xué)生數(shù)學(xué)素養(yǎng)的發(fā)展。但在具體教學(xué)實(shí)踐層面,如何有效幫助學(xué)生認(rèn)識(shí)歸納與演繹兩種思維方式是不容易的。究其原因,一方面是因?yàn)闅w納與演繹的方法與經(jīng)驗(yàn)往往隱匿于顯性知識(shí)之下,不易體悟與理解。另一方面,學(xué)生受年齡及心理發(fā)展特征影響,元認(rèn)知能力及邏輯推理能力尚處于發(fā)展之中,需要不斷積累,悉心培養(yǎng)。所以,需要教師進(jìn)行巧妙的教學(xué)設(shè)計(jì),從而促使以上學(xué)習(xí)目標(biāo)的達(dá)成。如在教學(xué)蘇教版《數(shù)學(xué)》三年級(jí)下冊(cè)“小數(shù)的初步認(rèn)識(shí)”時(shí),可以設(shè)計(jì)兩種不同的數(shù)學(xué)實(shí)驗(yàn)教學(xué),培養(yǎng)學(xué)生歸納和演繹的能力。一是歸納的方式。出示生活中的小數(shù),如0.1元、0.3元、0.2米、0.7米等。學(xué)生根據(jù)已有生活經(jīng)驗(yàn),能明白0.1元是1角,0.3元是3角,0.2米是2分米,0.7米是7分米。再引導(dǎo)學(xué)生結(jié)合情境,開(kāi)展數(shù)學(xué)實(shí)驗(yàn),利用學(xué)習(xí)材料(表示1元的正方形紙,表示1米的長(zhǎng)紙條)將這些小數(shù)表示出來(lái)。通過(guò)觀察與交流,發(fā)現(xiàn)這些一位小數(shù)的共同點(diǎn)(都是用零點(diǎn)幾來(lái)表示),總結(jié)歸納出共同的原因,也就是這兒的零點(diǎn)幾都表示10等份中的幾份,與之前學(xué)過(guò)的十分之幾含義上是一樣的,從而理解零點(diǎn)幾是一位小數(shù),是分母為10的另外一種形式的分?jǐn)?shù)。二是演繹的方式。先回顧計(jì)數(shù)器的使用,通過(guò)撥珠操作幫助學(xué)生回憶整數(shù)學(xué)習(xí)時(shí)的十進(jìn)制計(jì)數(shù)法。組織學(xué)生動(dòng)手操作,拔出不同數(shù)位上的珠子,說(shuō)說(shuō)具體的含義,進(jìn)一步認(rèn)識(shí)相鄰計(jì)數(shù)單位間的規(guī)則,即“滿(mǎn)十進(jìn)一”與“退一當(dāng)十”。接著交流個(gè)位上的珠子可以“退”嗎?“退”到什么數(shù)位上去呢?個(gè)位上的“退一”當(dāng)做“幾”呢?為什么也“退一當(dāng)十”?可以用小數(shù)來(lái)記錄嗎?個(gè)位右邊的數(shù)位的意義是什么?計(jì)數(shù)單位是多少?……結(jié)合以上數(shù)學(xué)思考開(kāi)展的數(shù)學(xué)實(shí)驗(yàn),將演繹的過(guò)程設(shè)計(jì)成可觀察、可交流、可重復(fù)的教學(xué)行為。

四、建構(gòu)知識(shí)結(jié)構(gòu)與認(rèn)知結(jié)構(gòu)的數(shù)學(xué)實(shí)驗(yàn)

傳統(tǒng)的數(shù)學(xué)教學(xué)觀認(rèn)為,數(shù)學(xué)學(xué)習(xí)只是智力活動(dòng),開(kāi)展數(shù)學(xué)實(shí)驗(yàn)比較浪費(fèi)時(shí)間,即使需要,充其量也是“紙上談兵”或“思想實(shí)驗(yàn)”而已。因此弗萊等塔爾曾指出:“要實(shí)現(xiàn)真正的數(shù)學(xué)教育,必須從根本上以不同的方式組織教學(xué),否則是不可能的。在傳統(tǒng)的課堂里,再創(chuàng)造方法不可能得到自由的發(fā)展。它要求有個(gè)實(shí)驗(yàn)室,學(xué)生可以在那兒個(gè)別活動(dòng)或小組活動(dòng)。”[4]這也就指出了,作為教學(xué)重要方式的數(shù)學(xué)實(shí)驗(yàn),要體現(xiàn)出獨(dú)特的教學(xué)價(jià)值,即活動(dòng)化與操作化、探索性與復(fù)制性的特征。教師要重視學(xué)生在數(shù)學(xué)實(shí)驗(yàn)活動(dòng)中的主體地位,創(chuàng)設(shè)“問(wèn)題—實(shí)驗(yàn)—交流—總結(jié)”的研究模式,讓學(xué)生始終保持積極主動(dòng)、樂(lè)于探究、動(dòng)手動(dòng)腦、討論交流、學(xué)思并進(jìn)的狀態(tài),在建構(gòu)知識(shí)系統(tǒng)的同時(shí)學(xué)會(huì)學(xué)習(xí),進(jìn)一步完善認(rèn)知結(jié)構(gòu)。比如,教學(xué)蘇教版《數(shù)學(xué)》三年級(jí)上冊(cè)“兩三位數(shù)除以一位數(shù)”時(shí),教材上呈現(xiàn)了兩個(gè)例題(如圖3),并出現(xiàn)了兩道除法算式:46÷2,52÷2,我們可以充分發(fā)揮學(xué)生的學(xué)習(xí)主體作用,讓學(xué)生經(jīng)歷合理有趣的數(shù)學(xué)實(shí)驗(yàn),先行嘗試、實(shí)際操作、自主調(diào)整、建立認(rèn)知,從而幫助學(xué)生深刻理解算理,掌握除法豎式算法。第一次實(shí)驗(yàn):操作小棒發(fā)現(xiàn),解決46÷2時(shí)存在兩種分法,即先分4個(gè)十,再分6個(gè)一;也可先分6個(gè)一,再分4個(gè)十。兩者皆可,皆合理,最后得出的結(jié)果都是23。第二次實(shí)驗(yàn):操作小棒發(fā)現(xiàn),解決52÷2時(shí),也存在兩種分法,即先分5個(gè)十,再分2個(gè)一;也可先分2個(gè)一,再分5個(gè)十。但是通過(guò)實(shí)驗(yàn)操作后的比較與交流,發(fā)現(xiàn)兩種分法上存在難易與繁簡(jiǎn)的區(qū)別:即先分5個(gè)十,會(huì)余下1個(gè)十,將其與2個(gè)一合起來(lái),得到12個(gè)一,接著分,這樣比較方便。結(jié)合除法豎式,在明確數(shù)學(xué)表達(dá)應(yīng)有序有理的基礎(chǔ)上,學(xué)生最終達(dá)成共識(shí)“從高位算起更方便”,完成了“知其然,更知其所以然”的認(rèn)知提升。綜上所述,隨著數(shù)學(xué)教育的不斷發(fā)展,作為課程內(nèi)容的數(shù)學(xué)實(shí)驗(yàn),體現(xiàn)出了新時(shí)代育人的獨(dú)特價(jià)值,體現(xiàn)出了返璞歸真的現(xiàn)代教育理念,建構(gòu)出一種學(xué)生可以充分參與、積極體驗(yàn)、深刻理解的學(xué)習(xí)方式。

參考文獻(xiàn)

[1]郭慶松.小學(xué)數(shù)學(xué)實(shí)驗(yàn)的內(nèi)涵、價(jià)值與實(shí)施[J].小學(xué)數(shù)學(xué)教育,2016(Z4):6-9.

[2]喻平,董林偉,魏玉華.數(shù)學(xué)實(shí)驗(yàn)教學(xué):靜態(tài)數(shù)學(xué)觀與動(dòng)態(tài)數(shù)學(xué)觀的融通[J].數(shù)學(xué)教育學(xué)報(bào),2015,24(01):26-28.

[3]波利亞.怎樣解題[M].閻育蘇,譯.北京:科學(xué)出版社,1982:11.

[4]弗萊登塔爾.作為教育任務(wù)的數(shù)學(xué)[M].陳昌平,唐瑞芬,譯.上海:上海教育出版社,1995:150.

作者:張偉 單位:江蘇省南京市江寧科學(xué)園小學(xué)