不等式解集教案

時間:2022-03-15 10:13:00

導語:不等式解集教案一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。

不等式解集教案

一、知識結構

二、重點、難點分析

本節教學的重點是不等式解集的概念及在數軸上表示不等式的解集的方法.難點為不等式的解集的概念.

1.不等式的解與方程的解的意義的異同點

相同點:定義方式相同(使方程成立的未知數的值,叫做方程的解);解的表示方法也相同.

不同點:解的個數不同,一般地,一個不等式有無數多個解,而一個方程只有一個或幾個解,例如,能使不等式成立,那么是不等式的一個解,類似地等也能使不等式成立,它們都是不等式的解,事實上,當取大于的數時,不等式都成立,所以不等式有無數多個解.

2.不等式的解與解集的區別與聯系

不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數的某個值,而不等式的解集,是指滿足這個不等式的未知數的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.

注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數值,都能使不等式成立;第二,解集外的任何一個數值,都不能使不等式成立.

3.不等式解集的表示方法

(1)用不等式表示

一般地,一個含未知數的不等式有無數多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式的解集是.

(2)用數軸表示

如不等式的解集,可以用數軸上表示4的點的左邊部分表示,因為包含,所以在表示4的點上畫實心圓.

如不等式的解集,可以用數軸上表示4的點的左邊部分表示,因為包含,所以在表示4的點上畫實心圈.

注意:在數軸上,右邊的點表示的數總比左邊的點表示的數大,所以在數軸上表示不等式的解集時應牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.

一、素質教育目標

(一)知識教學點

1.使學生了解不等式的解集、解不等式的概念,會在數軸上表示出不等式的解集.

2.知道不等式的“解集”與方程“解”的不同點.

(二)能力訓練點

通過教學,使學生能夠正確地在數軸上表示出不等式的解集,并且能把數軸上的某部分數集用相應的不等式表示.

(三)德育滲透點

通過講解不等式的“解集”與方程“解”的關系,向學生滲透對立統一的辯證觀點.

(四)美育滲透點

通過本節課的學習,讓學生了解不等式的解集可利用圖形來表達,滲透數形結合的數學美.

二、學法引導

1.教學方法:類比法、引導發現法、實踐法.

2.學生學法:明確不等式的解與解集的區別和聯系,并能熟練地用數軸表示不等式的解集,在數軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.

三、重點·難點·疑點及解決辦法

(一)重點

1.不等式解集的概念.

2.利用數軸表示不等式的解集.

(二)難點

正確理解不等式解集的概念.

(三)疑點

弄不清不等式的解集與方程的解的區別、聯系.

(四)解決辦法

弄清楚不等式的解與解集的概念.

四、課時安排

一課時.

五、教具學具準備

投影儀或電腦、自制膠片、直尺.

六、師生互動活動設計

(一)明確目標

本節課重點學習不等式的解集,解不等式的概念并會用數軸表示不等式的解集.

(二)整體感知

通過枚舉法來形象直觀地推出不等式的解集,再給出不等式解集的概念,從而更準確地讓學生掌握該概念.再通過師生的互動學習用數軸表示不等式的解集,從而為今后求不等式組的解集打下良好的基礎.

(三)教學過程

1.創設情境,復習引入

(1)根據不等式的基本性質,把下列不等式化成或的形式.

①②

(2)當取下列數值時,不等式是否成立?

l,0,2,-2.5,-4,3.5,4,4.5,3.

學生活動:獨立思考并說出答案:(1)①②.(2)當取1,0,2,-2.5,-4時,不等式成立;當取3.5,4,4.5,3時,不等式不成立.

大家知道,當取1,2,0,-2.5,-4時,不等式成立.同方程類似,我們就說1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3這些使不等式不成立的數就不是不等式的解.

對于不等式,除了上述解外,還有沒有解?解的個數是多少?將它們在數軸上表示出來,觀察它們的分布有什么規律?

學生活動:思考討論,嘗試得出答案,指名板演如下:

【教法說明】啟發學生用試驗方法,結合數軸直觀研究,把已說出的不等式的解2,0,1,-2.5,-4用“實心圓點”表示,把不是的解的數值3.5,4,4.5,3用“空心圓圈”表示,好像是“挖去了”.

師生歸納:觀察數軸可知,用“實心圓點”表示的數都落在3的左側,3和3右側的數都用空心圓圈表示,從而我們推斷,小于3的每一個數都是不等式的解,而大于或等于3的任何一個數都不是的解.可以看出,不等式有無限多個解,這無限多個解既包括小于3的正整數、正小數、又包括0、負整數、負小數;把不等式的無限多個解集中起來,就得到的解的集會,簡稱不等式的解集.

2.探索新知,講授新課

(1)不等式的解集

一般地,一個含有未知數的不等式的所有的解,組成這個不等式的解的集合,簡稱這個不等式的解集.

①以方程為例,說出一元一次方程的解的情況.

②不等式的解的個數是多少?能一一說出嗎?

(2)解不等式

求不等式的解集的過程,叫做解不等式.

解方程求出的是方程的解,而解不等式求出的則是不等式的解集,為什么?

學生活動:觀察思考,指名回答.

教師歸納:正是因為一元一次方程只有惟一解,所以可以直接求出.例如的解就是,而不等式的解有無限多個,無法一一列舉出來,因而只能用不等式或揭示這些解的共同屬性,也就是求出不等式的解集.實際上,求某個不等式的解集就是運用不等式的基本性質,把原不等式變形為或的形式,或就是原不式的解集,例如的解集是,同理,的解集是.

【教法說明】學生對一元一次方程的解印象較深,而不等式與方程的相同點較多,因而易將“不等式的解集”與“方程的解”混為一談,這里設置上述問題,目的是使學生弄清“不等式的解集”與“方程的解”的關系.

(3)在數軸上表示不等式的解集

①表示不等式的解集:()

分析:因為未知數的取值小于3,而數軸上小于3的數都在3的左邊,所以就用數軸上表示3的點的左邊部分來表示解集.注意未知數的取值不能為3,所以在數軸上表示3的點的位置上畫空心圓圈,表示不包括3這一點,表示如下:

②表示的解集:()

學生活動:獨立思考,指名板演并說出分析

過程.

分析:因為未知數的取值可以為-2或大于-2的數,而數軸上大于-2的數都在-2右邊,所以就用數鋼上表示-2的點和它的右邊部分來表示.如下圖所示:

注意問題:在數軸上表示-2的點的位置上,應畫實心圓心,表示包括這一點.

【教法說明】利用數軸表示不等式解的解集,增強了解集的直觀性,使學生形象地看到不等式的解有無限多個,這是數形結合的具體體現.教學時,要特別講清“實心圓點”與“空心圓圈”的不同用法,還要反復提醒學生弄清到底是“左邊部分”還是“右邊部分”,這也是學好本節內容的關鍵.

3.嘗試反饋,鞏固知識

(1)不等式的解集與有什么不同?在數軸上表示它們時怎樣區別?分別在數軸上把這兩個解集表示出來.

(2)在數軸上表示下列不等式的解集.

①②③④

(3)指出不等式的解集,并在數軸上表示出來.

師生活動:首先學生在練習本上完成,然后教師抽查,最后與出示投影的正確答案進行對比.

【教法說明】教學時,應強調2.(4)題的正確表示為:

我們已經能夠在數軸上準確地表示出不等式的解集,反之若給出數軸上的某部分數集,還要會寫出與之對應的不等式的解集來.

4.變式訓練,培養能力

(1)用不等式表示圖中所示的解集.

【教法說明】強調“·”“°”在使用、表示上的區別.

(2)單項選擇:

①不等式的解集是()

A.B.C.D.

②不等式的正整數解為()

A.1,2B.1,2,3C.1D.2

③用不等式表示圖中的解集,正確的是()

A.B.C.D.

④用數軸表示不等式的解集正確的是()

學生活動:分析思考,說出答案.(教師給予糾正或肯定)

【教法說明】此題以搶答形式茁現,更能激發學生探索知識的熱情.

(四)總結、擴展

學生小結,教師完善:

1.本節重點:

(1)了解不等式的解集的概念.

(2)會在數軸上表示不等式的解集.

2.注意事項:

弄清“·”還是“°”,是“左邊部分”還是“右邊部分”.

七、布置作業

必做題:P65A組3.(1)(2)(3)(4)

八、板書設計

6.2不等式的解集

一、1.不等式的解集:一般地,一個含有未知數的不等式的所有的解組成這個不等式的解的集合,簡稱不等式的解集.

2.解不等式:求不等式解的過程

二、在數軸上表示不等式的解集

1.2.

三、注意:(1)“·”與“°”;(2)“左邊部分”與“右邊部分”.