橢圓圓錐曲線教案

時(shí)間:2022-03-09 09:28:00

導(dǎo)語(yǔ):橢圓圓錐曲線教案一文來(lái)源于網(wǎng)友上傳,不代表本站觀點(diǎn),若需要原創(chuàng)文章可咨詢客服老師,歡迎參考。

橢圓圓錐曲線教案

教學(xué)目標(biāo):

1、橢圓圓錐曲線的一種,是高中數(shù)學(xué)教學(xué)中的重點(diǎn)和難點(diǎn),所以這部分內(nèi)容中的知識(shí)點(diǎn)學(xué)生必須達(dá)到理解、應(yīng)用的水平;

2、利用投影、計(jì)算機(jī)模擬動(dòng)點(diǎn)的運(yùn)動(dòng),增強(qiáng)直觀性,激勵(lì)學(xué)生的學(xué)習(xí)動(dòng)機(jī),培養(yǎng)學(xué)生的數(shù)學(xué)想象和抽象思維能力。

教學(xué)重點(diǎn):對(duì)橢圓定義的理解,其中a>c容易出錯(cuò)。

教學(xué)難點(diǎn):方程的推導(dǎo)過(guò)程。

教學(xué)過(guò)程:

(1)復(fù)習(xí)

提問(wèn):動(dòng)點(diǎn)軌跡的一般求法?

(通過(guò)回憶性質(zhì)的提問(wèn),明示這節(jié)課所要學(xué)的內(nèi)容與原來(lái)所學(xué)知識(shí)之間的內(nèi)在聯(lián)系。并為后面橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)作好準(zhǔn)備。)(2)引入

舉例:橢圓是常見的圖形,如:汽車油罐的橫截面,立體幾何中圓的直觀圖,天體中,行星繞太陽(yáng)運(yùn)行的軌道等等;

計(jì)算機(jī):動(dòng)態(tài)演示行星運(yùn)行的軌道。

(進(jìn)一步使學(xué)生明確學(xué)習(xí)橢圓的重要性和必要性,借計(jì)算機(jī)形成生動(dòng)的直觀,使學(xué)生印象加深,以便更好地掌握橢圓的形狀。)

(3)教學(xué)實(shí)施

投影:橢圓的定義:

平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做焦距(一般用2c表示)

常數(shù)一般用2表示。(講解定義時(shí)要注意條件:)

計(jì)算機(jī):動(dòng)態(tài)模擬動(dòng)點(diǎn)軌跡的形成過(guò)程。

提問(wèn):如何求軌跡的方程?

(引導(dǎo)學(xué)生推導(dǎo)橢圓的標(biāo)準(zhǔn)方程)

板書:橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程。(略)

(推導(dǎo)中注意:1)結(jié)合已畫出的圖形建立坐標(biāo)系,容易為學(xué)生所接受;2)在推導(dǎo)過(guò)程中,要抓住“怎樣消去方程中的根式”這一關(guān)鍵問(wèn)題,演算雖較繁,也能迎刃而解;3)其中焦點(diǎn)為F1(,0)、F2(c,0),;4)如果焦點(diǎn)在軸上,焦點(diǎn)為F1(0,)、F2(0,c),只要將方程中,互換就可得到它的方程)

投影:橢圓的標(biāo)準(zhǔn)方程:

()

()

投影:例1平面內(nèi)兩個(gè)定點(diǎn)的距離是8,寫出到這兩個(gè)定點(diǎn)的距離的和是10的點(diǎn)的軌跡方程

(由橢圓的定義可知:所求軌跡為橢圓;則只要求出、、即可)

形成性練習(xí):課本P74:2,3

(4)小結(jié)本節(jié)課學(xué)習(xí)了橢圓的定義及標(biāo)準(zhǔn)方程,應(yīng)注意以下幾點(diǎn):

①橢圓的定義中,②橢圓的標(biāo)準(zhǔn)方程中,焦點(diǎn)的位置看,的分母大小來(lái)確定

③、、的幾何意義

(5)作業(yè)

P80:2,4(1)(3)