對數函數教案
時間:2022-08-06 02:36:00
導語:對數函數教案一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。
教學目標:
(一)教學知識點:1.對數函數的概念;2.對數函數的圖象和性質.
(二)能力訓練要求:1.理解對數函數的概念;2.掌握對數函數的圖象和性質.
(三)德育滲透目標:1.用聯系的觀點分析問題;2.認識事物之間的互相轉化.
教學重點:
對數函數的圖象和性質
教學難點:
對數函數與指數函數的關系
教學方法:
聯想、類比、發現、探索
教學輔助:
多媒體
教學過程:
一、引入對數函數的概念
由學生的預習,可以直接回答“對數函數的概念”
由指數、對數的定義及指數函數的概念,我們進行類比,可否猜想有:
問題:1.指數函數是否存在反函數?
2.求指數函數的反函數.
①;
②;
③指出反函數的定義域.
3.結論
所以函數與指數函數互為反函數.
這節課我們所要研究的便是指數函數的反函數——對數函數.
二、講授新課
1.對數函數的定義:
定義域:(0,+∞);值域:(-∞,+∞)
2.對數函數的圖象和性質:
因為對數函數與指數函數互為反函數.所以與圖象關于直線對稱.
因此,我們只要畫出和圖象關于直線對稱的曲線,就可以得到的圖象.
研究指數函數時,我們分別研究了底數和兩種情形.
那么我們可以畫出與圖象關于直線對稱的曲線得到的圖象.
還可以畫出與圖象關于直線對稱的曲線得到的圖象.
請同學們作出與的草圖,并觀察它們具有一些什么特征?
對數函數的圖象與性質:
圖象
性質(1)定義域:
(2)值域:
(3)過定點,即當時,
(4)上的增函數
(4)上的減函數
3.圖象的加深理解:
下面我們來研究這樣幾個函數:,,,.
我們發現:
與圖象關于X軸對稱;與圖象關于X軸對稱.
一般地,與圖象關于X軸對稱.
再通過圖象的變化(變化的值),我們發現:
(1)時,函數為增函數,
(2)時,函數為減函數,
4.練習:
(1)如圖:曲線分別為函數,,,,的圖像,試問的大小關系如何?
(2)比較下列各組數中兩個值的大小:
(3)解關于x的不等式:
思考:(1)比較大小:
(2)解關于x的不等式:
三、小結
這節課我們主要介紹了指數函數的反函數——對數函數.并且研究了對數函數的圖象和性質.
四、課后作業
課本P85,習題2.8,1、3
- 上一篇:國際貿易融資分析論文
- 下一篇:貿易問題及對策分析論文
精品范文
10對數學教學的建議